Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Channels (Austin) ; 5(6): 482-8, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22020562

RESUMO

Structure of the Ca channel open pore is unlikely to be the same as that of the K channel because Ca channels do not contain the hinge residues Gly or Pro. The Ca channel does not have a wide entry into the inner pore, as is found in K channels. First we sought to simulate the open state of the Ca channel by modeling forced opening of the KcsA channel using a procedure of restrained minimization with distance constraints at the level of the α-helical bundle, corresponding to segments Thr-107-Val-115. This produced an intermediate open state, which was populated by amino acid residues of Ca channels and then successively optimized until the opening of the pore reached a diameter of about 10 Å, large enough to allow verapamil to enter and block the Ca channel from inside. Although this approach produced a sterically plausible structure, it was in significant disagreement with the MTSET accessibility data for single cysteine mutations of S6 segments of the P/Q channel(1) that do not fit with an α-helical pattern. Last we explored the idea that the four S6 segments of Ca channels may contain intra-molecular deformations that lead to reorientation of its side chains. After introduction of π-bulges, the model agreed with the MTSET accessibility data. MTSET modification of a cysteine at the C-end of only one S6 could produce physical occlusion and block of the inner pore of the open Ca channel, as observed experimentally, and as expected if the pore opening is narrower than that of K channels.


Assuntos
Canais de Cálcio/química , Modelos Moleculares , Animais , Canais de Cálcio/metabolismo , Humanos , Canais de Potássio/química , Canais de Potássio/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
2.
J Biol Chem ; 285(50): 39458-70, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20926383

RESUMO

Voltage-gated ion channels are transmembrane proteins that undergo complex conformational changes during their gating transitions. Both functional and structural data from K(+) channels suggest that extracellular and intracellular parts of the pore communicate with each other via a trajectory of interacting amino acids. No crystal structures are available for voltage-gated Na(+) channels, but functional data suggest a similar intramolecular communication involving the inner and outer vestibules. However, the mechanism of such communication is unknown. Here, we report that amino acid Ile-1575 in the middle of transmembrane segment 6 of domain IV (DIV-S6) in the adult rat skeletal muscle isoform of the voltage-gated sodium channel (rNa(V)1.4) may act as molecular switch allowing for interaction between outer and inner vestibules. Cysteine scanning mutagenesis of the internal part of DIV-S6 revealed that only mutations at site 1575 rescued the channel from a unique kinetic state ("ultra-slow inactivation," I(US)) produced by the mutation K1237E in the selectivity filter. A similar effect was seen with I1575A. Previously, we reported that conformational changes of both the internal and the external vestibule are involved in the generation of I(US). The fact that mutations at site 1575 modulate I(US) produced by K1237E strongly suggests an interaction between these sites. Our data confirm a previously published molecular model in which Ile-1575 of DIV-S6 is in close proximity to Lys-1237 of the selectivity filter. Furthermore, these functional data define the position of the selectivity filter relative to the adjacent DIV-S6 segment within the ionic permeation pathway.


Assuntos
Proteínas Musculares/metabolismo , Canais de Potássio/química , Canais de Sódio/química , Animais , Cisteína/química , Eletrofisiologia/métodos , Feminino , Ativação do Canal Iônico , Isoleucina/química , Cinética , Músculo Esquelético/metabolismo , Mutação , Conformação Proteica , Estrutura Terciária de Proteína , Ratos , Canais de Sódio/metabolismo , Xenopus laevis
3.
Biophys J ; 93(12): 4209-24, 2007 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17720727

RESUMO

Slow inactivated states in voltage-gated ion channels can be modulated by binding molecules both to the outside and to the inside of the pore. Thus, external K(+) inhibits C-type inactivation in Shaker K(+) channels by a "foot-in-the-door" mechanism. Here, we explore the modulation of a very long-lived inactivated state, ultraslow inactivation (I(US)), by ligand binding to the outer vestibule in voltage-gated Na(+) channels. Blocking the outer vestibule by a mutant mu-conotoxin GIIIA substantially accelerated recovery from I(US). A similar effect was observed if Cd(2+) was bound to a cysteine engineered to the selectivity filter (K1237C). In K1237C channels, exposed to 30 microM Cd(2+), the time constant of recovery from I(US) was decreased from 145.0 +/- 10.2 s to 32.5 +/- 3.3 s (P < 0.001). Recovery from I(US) was only accelerated if Cd(2+) was added to the bath solution during recovery (V = -120 mV) from I(US), but not when the channels were selectively exposed to Cd(2+) during the development of I(US) (-20 mV). These data could be explained by a kinetic model in which Cd(2+) binds with high affinity to a slow inactivated state (I(S)), which is transiently occupied during recovery from I(US). A total of 50 microM Cd(2+) produced an approximately 8 mV hyperpolarizing shift of the steady-state inactivation curve of I(S), supporting this kinetic model. Binding of lidocaine to the internal vestibule significantly reduced the number of channels entering I(US), suggesting that I(US) is associated with a conformational change of the internal vestibule of the channel. We propose a molecular model in which slow inactivation (I(S)) occurs by a closure of the outer vestibule, whereas I(US) arises from a constriction of the internal vestibule produced by a widening of the selectivity filter region. Binding of Cd(2+) to C1237 promotes the closure of the selectivity filter region, thereby hastening recovery from I(US). Thus, Cd(2+) ions may act like a foot-on-the-door, kicking the I(S) gate to close.


Assuntos
Cádmio/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Oócitos/fisiologia , Canais de Sódio/fisiologia , Sódio/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Cinética , Ligação Proteica , Xenopus laevis
4.
J Physiol ; 581(Pt 2): 741-55, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17363383

RESUMO

Our homology molecular model of the open/inactivated state of the Na(+) channel pore predicts, based on extensive mutagenesis data, that the local anaesthetic lidocaine docks eccentrically below the selectivity filter, such that physical occlusion is incomplete. Electrostatic field calculations suggest that the drug's positively charged amine produces an electrostatic barrier to permeation. To test the effect of charge at this pore level on permeation in hNa(V)1.5 we replaced Phe-1759 of domain IVS6, the putative binding site for lidocaine's alkylamino end, with positively and negatively charged residues as well as the neutral cysteine and alanine. These mutations eliminated use-dependent lidocaine block with no effect on tonic/rested state block. Mutant whole cell currents were kinetically similar to wild type (WT). Single channel conductance (gamma) was reduced from WT in both F1759K (by 38%) and F1759R (by 18%). The negatively charged mutant F1759E increased gamma by 14%, as expected if the charge effect were electrostatic, although F1759D was like WT. None of the charged mutations affected Na(+)/K(+) selectivity. Calculation of difference electrostatic fields in the pore model predicted that lidocaine produced the largest positive electrostatic barrier, followed by lysine and arginine, respectively. Negatively charged glutamate and aspartate both lowered the barrier, with glutamate being more effective. Experimental data were in rank order agreement with the predicted changes in the energy profile. These results demonstrate that permeation rate is sensitive to the inner pore electrostatic field, and they are consistent with creation of an electrostatic barrier to ion permeation by lidocaine's charge.


Assuntos
Anestésicos Locais/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Lidocaína/farmacologia , Proteínas Musculares/antagonistas & inibidores , Bloqueadores dos Canais de Sódio/farmacologia , Anestésicos Locais/química , Anestésicos Locais/metabolismo , Arginina/química , Ácido Aspártico/química , Sítios de Ligação , Linhagem Celular , Ácido Glutâmico/química , Humanos , Cinética , Lidocaína/química , Lidocaína/metabolismo , Lisina/química , Potenciais da Membrana/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Proteínas Musculares/química , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5 , Técnicas de Patch-Clamp , Fenilalanina , Conformação Proteica , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/química , Canais de Sódio/genética , Canais de Sódio/metabolismo , Eletricidade Estática , Transfecção
5.
J Physiol ; 561(Pt 2): 403-13, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15579536

RESUMO

The inner pore of the voltage-gated Na+ channel is predicted by the structure of bacterial potassium channels to be lined with the four S6 alpha-helical segments. Our previously published model of the closed pore based on the KcsA structure, and our new model of the open pore based on the MthK structure predict which residues in the mid-portion of S6 face the pore. We produced cysteine mutants of the mid-portion of domain IV-S6 (Ile-1575-Leu-1591) in NaV 1.4 and tested their accessibility to intracellularly and extracellularly placed positively charged methanethiosulfonate (MTS) reagents. We found that only two mutants, F1579C and V1583C, were accessible to both outside and inside 2-(aminoethyl)-methanethiosulfonate hydrobromide (MTSEA) Further study of those mutants showed that efficient closure of the fast inactivation gate prevented block by inside [2-(trimethylammonium)ethyl]methanethiosulfonate bromide (MTSET) at slow stimulation rates. When fast inactivation was inhibited by exposure to anthropleurin B (ApB), increasing channel open time, both mutants were blocked by inside MTSET at a rate that depended on the amount of time the channel was open. Consistent with the fast inactivation gate limiting access to the pore, in the absence of ApB, inside MTSET produced block when the cells were stimulated at 5 or 20 Hz. We therefore suggest that the middle of IV-S6 is an alpha-helix, and we propose a model of the open channel, based on MthK, in which Phe-1579 and Val-1583 face the pore.


Assuntos
Mesilatos/metabolismo , Modelos Moleculares , Proteínas Musculares/metabolismo , Fragmentos de Peptídeos/metabolismo , Canais de Sódio/metabolismo , Substituição de Aminoácidos/genética , Animais , Linhagem Celular , Humanos , Mesilatos/química , Mesilatos/farmacologia , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/genética , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Ratos , Canais de Sódio/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA