Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(5): e62338, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671593

RESUMO

The 5'-AMP-activated protein kinase (AMPK) is considered "a metabolic master-switch" in skeletal muscle reducing ATP- consuming processes whilst stimulating ATP regeneration. Within recent years, AMPK has also been proposed as a potential target to attenuate insulin resistance, although the exact role of AMPK is not well understood. Here we hypothesized that mice lacking α2AMPK activity in muscle would be more susceptible to develop insulin resistance associated with ageing alone or in combination with high fat diet. Young (∼4 month) or old (∼18 month) wild type and muscle specific α2AMPK kinase-dead mice on chow diet as well as old mice on 17 weeks of high fat diet were studied for whole body glucose homeostasis (OGTT, ITT and HOMA-IR), insulin signaling and insulin-stimulated glucose uptake in muscle. We demonstrate that high fat diet in old mice results in impaired glucose homeostasis and insulin stimulated glucose uptake in both the soleus and extensor digitorum longus muscle, coinciding with reduced insulin signaling at the level of Akt (pSer473 and pThr308), TBC1D1 (pThr590) and TBC1D4 (pThr642). In contrast to our hypothesis, the impact of ageing and high fat diet on insulin action was not worsened in mice lacking functional α2AMPK in muscle. It is concluded that α2AMPK deficiency in mouse skeletal muscle does not cause muscle insulin resistance in young and old mice and does not exacerbate obesity-induced insulin resistance in old mice suggesting that decreased α2AMPK activity does not increase susceptibility for insulin resistance in skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Insulina/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Área Sob a Curva , Glicemia , Composição Corporal , Proteínas Ativadoras de GTPase/metabolismo , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 4/metabolismo , Hexoquinase/metabolismo , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Diabetes ; 60(1): 64-73, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20956497

RESUMO

OBJECTIVE: We have previously shown that overnight fasted women have higher insulin-stimulated whole body and leg glucose uptake despite a higher intramyocellular triacylglycerol concentration than men. Women also express higher muscle mRNA levels of proteins related to lipid metabolism than men. We therefore hypothesized that women would be less prone to lipid-induced insulin resistance. RESEARCH DESIGN AND METHODS: Insulin sensitivity of whole-body and leg glucose disposal was studied in 16 young well-matched healthy men and women infused with intralipid or saline for 7 h. Muscle biopsies were obtained before and during a euglycemic-hyperinsulinemic clamp (1.42 mU · kg⁻¹ · min⁻¹). RESULTS: Intralipid infusion reduced whole-body glucose infusion rate by 26% in women and 38% in men (P < 0.05), and insulin-stimulated leg glucose uptake was reduced significantly less in women (45%) than men (60%) after intralipid infusion. Hepatic glucose production was decreased during the clamp similarly in women and men irrespective of intralipid infusion. Intralipid did not impair insulin or AMPK signaling in muscle and subcutaneous fat, did not cause accumulation of muscle lipid intermediates, and did not impair insulin-stimulated glycogen synthase activity in muscle or increase plasma concentrations of inflammatory cytokines. In vitro glucose transport in giant sarcolemmal vesicles was not decreased by acute exposure to fatty acids. Leg lactate release was increased and respiratory exchange ratio was decreased by intralipid. CONCLUSIONS: Intralipid infusion causes less insulin resistance of muscle glucose uptake in women than in men. This insulin resistance is not due to decreased canonical insulin signaling, accumulation of lipid intermediates, inflammation, or direct inhibition of GLUT activity. Rather, a higher leg lactate release and lower glucose oxidation with intralipid infusion may suggest a metabolic feedback regulation of glucose metabolism.


Assuntos
Resistência à Insulina/fisiologia , Insulina/fisiologia , Lipídeos/farmacologia , Fosfolipídeos/farmacologia , Transdução de Sinais/fisiologia , Óleo de Soja/farmacologia , Triglicerídeos/metabolismo , Adiponectina/sangue , Tecido Adiposo/anatomia & histologia , Adulto , Animais , Metabolismo Basal/fisiologia , Velocidade do Fluxo Sanguíneo , Estatura , Índice de Massa Corporal , Emulsões/farmacologia , Epinefrina/sangue , Estradiol/sangue , Exercício Físico , Jejum , Feminino , Glucose/metabolismo , Técnica Clamp de Glucose , Humanos , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Insulina/sangue , Insulina/farmacologia , Masculino , Músculo Esquelético/citologia , Norepinefrina/sangue , Consumo de Oxigênio , Ratos , Sarcolema/metabolismo , Caracteres Sexuais , Triglicerídeos/sangue
3.
Diabetes ; 57(2): 357-66, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17977950

RESUMO

OBJECTIVE: Insulin resistance in skeletal muscle is a major risk factor for type 2 diabetes in women with polycystic ovary syndrome (PCOS). However, the molecular mechanisms underlying skeletal muscle insulin resistance and the insulin-sensitizing effect of thiazolidinediones in PCOS in vivo are less well characterized. RESEARCH DESIGN AND METHODS: We determined molecular mediators of insulin signaling to glucose transport in skeletal muscle biopsies of 24 PCOS patients and 14 matched control subjects metabolically characterized by euglycemic-hyperinsulinemic clamps and indirect calorimetry, and we examined the effect of 16 weeks of treatment with pioglitazone in PCOS patients. RESULTS: Impaired insulin-mediated total (R(d)) oxidative and nonoxidative glucose disposal (NOGD) was paralleled by reduced insulin-stimulated Akt phosphorylation at Ser473 and Thr308 and AS160 phosphorylation in muscle of PCOS patients. Akt phosphorylation at Ser473 and Thr308 correlated positively with R(d) and NOGD in the insulin-stimulated state. Serum free testosterone was inversely related to insulin-stimulated R(d) and NOGD in PCOS. Importantly, the pioglitazone-mediated improvement in insulin-stimulated glucose metabolism, which did not fully reach normal levels, was accompanied by normalization of insulin-mediated Akt phosphorylation at Ser473 and Thr308 and AS160 phosphorylation. AMPK activity and phosphorylation were similar in the two groups and did not respond to pioglitazone in PCOS patients. CONCLUSIONS: Impaired insulin signaling through Akt and AS160 in part explains insulin resistance at the molecular level in skeletal muscle in PCOS, and the ability of pioglitazone to enhance insulin sensitivity involves improved signaling through Akt and AS160. Moreover, our data provide correlative evidence that hyperandrogenism in PCOS may contribute to insulin resistance.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Insulina/farmacologia , Músculo Esquelético/fisiopatologia , Síndrome do Ovário Policístico/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tiazolidinedionas/uso terapêutico , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Proteínas Ativadoras de GTPase/efeitos dos fármacos , Técnica Clamp de Glucose , Humanos , Hipoglicemiantes/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Obesidade , Fosforilação , Pioglitazona , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/enzimologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Valores de Referência
4.
Diabetes ; 56(8): 2070-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17601993

RESUMO

HIV-infected patients with lipodystrophy (HIV lipodystrophy) are insulin resistant and have elevated plasma free fatty acid (FFA) concentrations. We aimed to explore the mechanisms underlying FFA-induced insulin resistance in patients with HIV lipodystrophy. Using a randomized, placebo-controlled, cross-over design, we studied the effects of an overnight acipimox-induced suppression of FFAs on glucose and FFA metabolism by using stable isotope-labeled tracer techniques during basal conditions and a two-stage euglycemic-hyperinsulinemic clamp (20 and 50 mU insulin/m(2) per min, respectively) in nine patients with nondiabetic HIV lipodystrophy. All patients received antiretroviral therapy. Biopsies from the vastus lateralis muscle were obtained during each stage of the clamp. Acipimox treatment reduced basal FFA rate of appearance by 68.9% (95% CI 52.6-79.5) and decreased plasma FFA concentration by 51.6% (42.0-58.9) (both, P < 0.0001). Endogenous glucose production was not influenced by acipimox. During the clamp, the increase in glucose uptake was significantly greater after acipimox treatment compared with placebo (acipimox: 26.85 micromol x kg(-1) x min(-1) [18.09-39.86] vs. placebo: 20.30 micromol x kg(-1) x min(-1) [13.67-30.13]; P < 0.01). Insulin increased phosphorylation of Akt Thr(308) and glycogen synthase kinase-3beta Ser(9), decreased phosphorylation of glycogen synthase (GS) site 3a + b, and increased GS activity (percent I-form) in skeletal muscle (P < 0.01). Acipimox decreased phosphorylation of GS (site 3a + b) (P < 0.02) and increased GS activity (P < 0.01) in muscle. The present study provides direct evidence that suppression of lipolysis in patients with HIV lipodystrophy improves insulin-stimulated peripheral glucose uptake. The increased glucose uptake may in part be explained by increased dephosphorylation of GS (site 3a + b), resulting in increased GS activity.


Assuntos
Glucose/biossíntese , Glucose/metabolismo , Síndrome de Lipodistrofia Associada ao HIV/metabolismo , Lipólise/efeitos dos fármacos , Biópsia , Ácidos Graxos não Esterificados/sangue , Glucose/administração & dosagem , Glicogênio Sintase/metabolismo , Síndrome de Lipodistrofia Associada ao HIV/tratamento farmacológico , Síndrome de Lipodistrofia Associada ao HIV/patologia , Humanos , Insulina , Masculino , Pessoa de Meia-Idade , Palmitatos/sangue , Palmitatos/farmacologia , Pirazinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
5.
J Physiol ; 583(Pt 2): 785-95, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17627985

RESUMO

Here the hypothesis that skeletal muscle Ca(2+)-calmodulin-dependent kinase II (CaMKII) expression and signalling would be modified by endurance training was tested. Eight healthy, young men completed 3 weeks of one-legged endurance exercise training with muscle samples taken from both legs before training and 15 h after the last exercise bout. Along with an approximately 40% increase in mitochondrial F(1)-ATP synthase expression, there was an approximately 1-fold increase in maximal CaMKII activity and CaMKII kinase isoform expression after training in the active leg only. Autonomous CaMKII activity and CaMKII autophosphorylation were increased to a similar extent. However, there was no change in alpha-CaMKII anchoring protein expression with training. Nor was there any change in expression or Thr(17) phosphorylation of the CaMKII substrate phospholamban with training. However, another CaMKII substrate, serum response factor (SRF), had an approximately 60% higher phosphorylation at Ser(103) after training, with no change in SRF expression. There were positive correlations between the increases in CaMKII expression and SRF phosphorylation as well as F(1)ATPase expression with training. After training, there was an increase in cyclic-AMP response element binding protein phosphorylation at Ser(133), but not expression, in muscle of both legs. Taken together, skeletal muscle CaMKII kinase isoform expression and SRF phosphorylation is higher with endurance-type exercise training, adaptations that are restricted to active muscle. This may contribute to greater Ca(2+) mediated regulation during exercise and the altered muscle phenotype with training.


Assuntos
Adaptação Fisiológica , Sinalização do Cálcio , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/biossíntese , Exercício Físico/fisiologia , Contração Muscular , Músculo Esquelético/metabolismo , Resistência Física/fisiologia , Adulto , Proteínas de Ligação ao Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Indução Enzimática , Humanos , Isoenzimas/biossíntese , Masculino , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/enzimologia , Fenótipo , Fosforilação , ATPases Translocadoras de Prótons/biossíntese , Fator de Resposta Sérica/metabolismo , Fatores de Tempo
6.
J Physiol ; 582(Pt 3): 1289-301, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17540697

RESUMO

We investigated if acute endurance-type exercise interacts with insulin-stimulated activation of atypical protein kinase C (aPKC) and insulin signalling to peptide chain elongation in human skeletal muscle. Four hours after acute one-legged exercise, insulin-induced glucose uptake was approximately 80% higher (N = 12, P < 0.05) in previously exercised muscle, measured during a euglycaemic-hyperinsulinaemic clamp (100 microU ml(-1)). Insulin increased (P < 0.05) both insulin receptor substrate (IRS)-1 and IRS-2 associated phosphatidylinositol (PI)-3 kinase activity and led to increased (P < 0.001) phosphorylation of Akt on Ser(473) and Thr(308) in skeletal muscle. Interestingly, in response to prior exercise IRS-2-associated PI-3 kinase activity was higher (P < 0.05) both at basal and during insulin stimulation. This coincided with correspondingly altered phosphorylation of the extracellular-regulated protein kinase 1/2 (ERK 1/2), p70S6 kinase (P70S6K), eukaryotic elongation factor 2 (eEF2) kinase and eEF2. aPKC was similarly activated by insulin in rested and exercised muscle, without detectable changes in aPKC Thr(410) phosphorylation. However, when adding phosphatidylinositol-3,4,5-triphosphate (PIP3), the signalling product of PI-3 kinase, to basal muscle homogenates, aPKC was more potently activated (P = 0.01) in previously exercised muscle. Collectively, this study shows that endurance-type exercise interacts with insulin signalling to peptide chain elongation. Although protein turnover was not evaluated, this suggests that capacity for protein synthesis after acute endurance-type exercise may be improved. Furthermore, endurance exercise increased the responsiveness of aPKC to PIP3 providing a possible link to improved insulin-stimulated glucose uptake after exercise.


Assuntos
Exercício Físico/fisiologia , Insulina/fisiologia , Músculo Esquelético/fisiologia , Fosfatos de Fosfatidilinositol/fisiologia , Proteína Quinase C/metabolismo , Adulto , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Técnica Clamp de Glucose , Humanos , Hiperinsulinismo , Insulina/farmacologia , Proteínas Substratos do Receptor de Insulina , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lactatos/sangue , Masculino , Elongação Traducional da Cadeia Peptídica , Fosfoproteínas/fisiologia , Transdução de Sinais
7.
Diabetes ; 56(8): 2093-102, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17513702

RESUMO

The purpose of this study was to investigate the mechanisms explaining improved insulin-stimulated glucose uptake after exercise training in human skeletal muscle. Eight healthy men performed 3 weeks of one-legged knee extensor endurance exercise training. Fifteen hours after the last exercise bout, insulin-stimulated glucose uptake was approximately 60% higher (P < 0.01) in the trained compared with the untrained leg during a hyperinsulinemic-euglycemic clamp. Muscle biopsies were obtained before and after training as well as after 10 and 120 min of insulin stimulation in both legs. Protein content of Akt1/2 (55 +/- 17%, P < 0.05), AS160 (25 +/- 8%, P = 0.08), GLUT4 (52 +/- 19%, P < 0.001), hexokinase 2 (HK2) (197 +/- 40%, P < 0.001), and insulin-responsive aminopeptidase (65 +/- 15%, P < 0.001) increased in muscle in response to training. During hyperinsulinemia, activities of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-K) (P < 0.005), Akt1 (P < 0.05), Akt2 (P < 0.005), and glycogen synthase (GS) (percent I-form, P < 0.05) increased similarly in both trained and untrained muscle, consistent with increased phosphorylation of Akt Thr(308), Akt Ser(473), AS160, glycogen synthase kinase (GSK)-3alpha Ser(21), and GSK-3beta Ser(9) and decreased phosphorylation of GS site 3a+b (all P < 0.005). Interestingly, training improved insulin action on thigh blood flow, and, furthermore, in both basal and insulin-stimulated muscle tissue, activities of Akt1 and GS and phosphorylation of AS160 increased with training (all P < 0.05). In contrast, training reduced IRS-1-associated PI3-K activity (P < 0.05) in both basal and insulin-stimulated muscle tissue. Our findings do not support generally improved insulin signaling after endurance training; rather it seems that improved insulin-stimulated glucose uptake may result from hemodynamic adaptations as well as increased cellular protein content of individual insulin signaling components and molecules involved in glucose transport and metabolism.


Assuntos
Exercício Físico , Proteínas Ativadoras de GTPase/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adaptação Biológica , Adulto , Glicemia/metabolismo , Humanos , Masculino , Músculo Esquelético/efeitos dos fármacos , Fosforilação , Fatores de Tempo
8.
FASEB J ; 21(11): 2683-94, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17470570

RESUMO

Previous studies have described the magnitude and time course by which several genes are regulated within exercising skeletal muscle. These include interleukin-6 (IL-6), interleukin-8 (IL-8), heme oxygenase-1 (HO-1), and heat shock protein-72 (HSP72), which are involved in secondary signaling and preservation of intracellular environment. However, the primary signaling mechanisms coupling contraction to transcription are unknown. We hypothesized that exercise-induced nitric oxide (NO) production is an important signaling event for IL-6, IL-8, HO-1, and HSP72 expression in muscle. Twenty healthy males participated in the study. By real-time PCR, mRNA levels for 11 genes were determined in thigh muscle biopsies obtained 1) before and after 2 h knee extensor exercise without (control) and with concomitant NO synthase inhibition (nitro-L-arginine methyl ester, L-NAME, 5 mg x kg(-1)); or 2) before and after 2 h femoral artery infusion of the NO donor nitroglycerin (NTG, 1.5 microg x kg(-1) x min(-1)). L-NAME caused marked reductions in exercise-induced expression of 4 of 11 mRNAs including IL-6, IL-8, and HO-1. IL-6 protein release from the study leg to the circulation increased in the control but not in the L-NAME trial. NTG infusion significantly augmented expression of the mRNAs attenuated by L-NAME. These findings advance the novel concept that NO production contributes to regulation of gene expression in muscle during exercise. Subsequently, we sought evidence for involvement of AMP-activated kinase or nuclear factor kappa B, but found none.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , RNA Mensageiro/genética , Transdução de Sinais , Proteínas Quinases Ativadas por AMP , Adulto , Biópsia , Ativação Enzimática , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Complexos Multienzimáticos/metabolismo , NF-kappa B/metabolismo , NG-Nitroarginina Metil Éster/farmacologia , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coxa da Perna
9.
Diabetes ; 54(12): 3474-83, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306364

RESUMO

More than 40% of HIV-infected patients on highly active antiretroviral therapy (HAART) experience fat redistribution (lipodystrophy), a syndrome associated with insulin resistance primarily affecting insulin-stimulated nonoxidative glucose metabolism (NOGM(ins)). Skeletal muscle biopsies, obtained from 18 lipodystrophic nondiabetic patients (LIPO) and 18 nondiabetic patients without lipodystrophy (NONLIPO) before and during hyperinsulinemic (40 mU.m(-2).min(-1))-euglycemic clamps, were analyzed for insulin signaling effectors. All patients were on HAART. Both LIPO and NONLIPO patients were normoglycemic (4.9 +/- 0.1 and 4.8 +/- 0.1 mmol/l, respectively); however, NOGM(ins) was reduced by 49% in LIPO patients (P < 0.001). NOGM(ins) correlated positively with insulin-stimulated glycogen synthase activity (I-form, P < 0.001, n = 36). Glycogen synthase activity (I-form) correlated inversely with phosphorylation of glycogen synthase sites 2+2a (P < 0.001, n = 36) and sites 3a+b (P < 0.001, n = 36) during clamp. Incremental glycogen synthase-kinase-3alpha and -3beta phosphorylation was attenuated in LIPO patients (Ps < 0.05). Insulin-stimulated Akt Ser473 and Akt Thr308 phosphorylation was decreased in LIPO patients (P < 0.05), whereas insulin receptor substrate-1-associated phosphatidylinositol (PI) 3-kinase activity increased significantly (P < 0.001) and similarly (NS) in both groups during clamp. Thus, low glycogen synthase activity explained impaired NOGM(ins) in HIV lipodystrophy, and insulin signaling defects were downstream of PI 3-kinase at the level of Akt. These results suggest mechanisms for the insulin resistance greatly enhancing the risk of type 2 diabetes in HIV lipodystrophy.


Assuntos
Glucose/metabolismo , Síndrome de Lipodistrofia Associada ao HIV/fisiopatologia , Insulina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome da Imunodeficiência Adquirida/tratamento farmacológico , Síndrome da Imunodeficiência Adquirida/enzimologia , Síndrome da Imunodeficiência Adquirida/fisiopatologia , Adulto , Terapia Antirretroviral de Alta Atividade , Colesterol/sangue , Ácidos Graxos não Esterificados/sangue , Glicogênio Sintase/metabolismo , Síndrome de Lipodistrofia Associada ao HIV/sangue , Síndrome de Lipodistrofia Associada ao HIV/enzimologia , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiopatologia , Oxirredução , RNA Viral/isolamento & purificação , Transdução de Sinais/fisiologia , Triglicerídeos/sangue , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA