Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Clin Exp Urol ; 11(1): 27-39, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923723

RESUMO

BACKGROUND: Risk factors for prostate cancer include age, environment, race and ethnicity. Genetic variants in cyclic-adenosine-monophosphate-response-element-binding protein 3 regulatory factor (CREBRF) gene are frequently observed in Pacific Islanders, a population with elevated prostate cancer incidence. CREBRF has been shown to play a role in other cancers, however its function in prostate homeostasis and tumorigenesis has not been previously explored. We determined the incidence of CREBRF alterations in publicly available databases and examined the impact of CREBRF deletion on the murine prostate in order to determine whether CREBRF impacts prostate physiology or pathophysiology. METHODS: Alterations in CREBRF were identified in prostate cancer patients via in silico analysis of several publicly available datasets through cBioPortal. Male Crebrf knockout and wild-type littermate mice were generated and examined for prostate defects at 4 months of age. Immunohistochemical staining of murine prostate sections was used to determine the impact of Crebrf knockout on proliferation, apoptosis, inflammation and blood vessel density in the prostate. Serum adipokine levels were measured using a Luminex Multiplex Assay. RESULTS: CREBRF alterations were identified in up to 4.05% of prostate tumors and the mutations identified were categorized as likely damaging. Median survival of prostate cancer patients with genetic alterations in CREBRF was 41.23 months, compared to 131 months for patients without these changes. In the murine model, the prostates of Crebrf knockout mice had reduced epithelial proliferation and increased TUNEL+ apoptotic cells. Circulating adipokines PAI-1 and MCP-1 were also altered in Crebrf knockout mice compared to age-matched controls. CONCLUSIONS: Prostate cancer patients with genetic alterations in CREBRF had a significantly decreased overall survival suggesting that wild type CREBRF may play a role in limiting prostate tumorigenesis and progression. The murine knockout model demonstrated that CREBRF could modulate proliferation and apoptosis and macrophage density in the prostate. Serum levels of adipokines PAI-1 and MCP-1 were also altered and may contribute to the phenotypic changes observed in the prostates of Crebrf knockout mice. Future studies focused on populations susceptible to CREBRF mutations and mechanistic studies will be required to fully elucidate the potential role of CREBRF in prostate tumorigenesis.

2.
J Biol Chem ; 291(28): 14747-60, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226548

RESUMO

Current pharmacotherapies for symptomatic benign prostatic hyperplasia (BPH), an androgen receptor-driven, inflammatory disorder affecting elderly men, include 5α-reductase (5AR) inhibitors (i.e. dutasteride and finasteride) to block the conversion of testosterone to the more potent androgen receptor ligand dihydrotestosterone. Because dihydrotestosterone is the precursor for estrogen receptor ß (ERß) ligands, 5AR inhibitors could potentially limit ERß activation, which maintains prostate tissue homeostasis. We have uncovered signaling pathways in BPH-derived prostate epithelial cells (BPH-1) that are impacted by 5AR inhibition. The induction of apoptosis and repression of the cell adhesion protein E-cadherin by the 5AR inhibitor dutasteride requires both ERß and TGFß. Dutasteride also induces cyclooxygenase type 2 (COX-2), which functions in a negative feedback loop in TGFß and ERß signaling pathways as evidenced by the potentiation of apoptosis induced by dutasteride or finasteride upon pharmacological inhibition or shRNA-mediated ablation of COX-2. Concurrently, COX-2 positively impacts ERß action through its effect on the expression of a number of steroidogenic enzymes in the ERß ligand metabolic pathway. Therefore, effective combination pharmacotherapies, which have included non-steroidal anti-inflammatory drugs, must take into account biochemical pathways affected by 5AR inhibition and opposing effects of COX-2 on the tissue-protective action of ERß.


Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dutasterida/farmacologia , Receptor beta de Estrogênio/fisiologia , Próstata/metabolismo , Células Cultivadas , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Humanos , Masculino , Prostaglandinas/biossíntese , Próstata/citologia , Próstata/enzimologia
3.
J Immunol Methods ; 398-399: 27-32, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24055127

RESUMO

Endocan is a secreted proteoglycan that has been shown to indicate angiogenic activity: remodeling in several tumor types in humans and mice. Serum endocan levels also indicate prognosis and has been proposed as a biomarker for certain cancers. Recently, monoclonal antibodies directed against mouse endocan have been developed allowing for further characterization of endocan function and potentially as a marker for angiogenesis through immunoreactivity in endothelial tip cells. The results of the current study show that endocan immunoreactivity in the mouse brain is present in blood vascular networks including but not limited to the cortex, hippocampus and paraventricular nucleus of the hypothalamus in C57BL/6J and FVB/N mice. Endocan immunoreactivity did not vary during postnatal development or by sex. Interestingly, after vascular perfusion with fluorescein isothiocyanate (FITC), endothelial cells positive for FITC were immunonegative for endocan suggesting FITC interference with the immunohistochemistry. A small number of FITC-negative blood vessels were endocan immunoreactive suggesting the identification of new blood vessels that are not yet functional. The current study shows that endocan is normally present in the mouse brain and prior vascular perfusion with FITC may provide a useful tool for identify newly forming blood vessels.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Células Endoteliais/imunologia , Neovascularização Fisiológica/fisiologia , Proteoglicanas/metabolismo , Animais , Encéfalo/citologia , Encéfalo/imunologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Proteoglicanas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA