Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Ageing Res Rev ; 99: 102391, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914266

RESUMO

Cellular senescence (CS) is recognized as one of the hallmarks of aging, and an important player in a variety of age-related pathologies. Accumulation of senescent cells can promote a pro-inflammatory and pro-cancerogenic microenvironment. Among potential senotherapeutics are extracellular vesicles (EVs) (40-1000 nm), including exosomes (40-150 nm), that play an important role in cell-cell communications. Here, we review the most recent studies on the impact of EVs derived from stem cells (MSCs, ESCs, iPSCs) as well as non-stem cells of various types on CS and discuss potential mechanisms responsible for the senotherapeutic effects of EVs. The analysis revealed that (i) EVs derived from stem cells, pluripotent (ESCs, iPSCs) or multipotent (MSCs of various origin), can mitigate the cellular senescence phenotype both in vitro and in vivo; (ii) this effect is presumably senomorphic; (iii) EVs display cross-species activity, without apparent immunogenic responses. In summary, stem cell-derived EVs appear to be promising senotherapeutics, with a feasible application in humans.

2.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901920

RESUMO

Age-related decline in cognitive functions is associated with reduced hippocampal neurogenesis caused by changes in the systemic inflammatory milieu. Mesenchymal stem cells (MSC) are known for their immunomodulatory properties. Accordingly, MSC are a leading candidate for cell therapy and can be applied to alleviate inflammatory diseases as well as aging frailty via systemic delivery. Akin to immune cells, MSC can also polarize into pro-inflammatory MSC (MSC1) and anti-inflammatory MSC (MSC2) following activation of Toll-like receptor 4 (TLR4) and TLR3, respectively. In the present study, we apply pituitary adenylate cyclase-activating peptide (PACAP) to polarize bone-marrow-derived MSC towards an MSC2 phenotype. Indeed, we found that polarized anti-inflammatory MSC were able to reduce the plasma levels of aging related chemokines in aged mice (18-months old) and increased hippocampal neurogenesis following systemic administration. Similarly, aged mice treated with polarized MSC displayed improved cognitive function in the Morris water maze and Y-maze assays compared with vehicle- and naïve-MSC-treated mice. Changes in neurogenesis and Y-maze performance were negatively and significantly correlated with sICAM, CCL2 and CCL12 serum levels. We conclude that polarized PACAP-treated MSC present anti-inflammatory properties that can mitigate age-related changes in the systemic inflammatory milieu and, as a result, ameliorate age related cognitive decline.


Assuntos
Células-Tronco Mesenquimais , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Animais , Camundongos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Hipocampo , Neurogênese/fisiologia , Anti-Inflamatórios , Cognição
3.
Biogerontology ; 23(4): 425-430, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35727470

RESUMO

The linear no-threshold (LNT) hypothesis is still the ruling concept which dictates the radiation protection health policy and regulations. However, more and more studies show that not only that low dose radiation pose no danger to our health, but also exhibits clear beneficial health effects. Here, we evaluated the correlative links of the natural sources of radiation-terrestrial radiation (TR), cosmic radiation (CR), and Radon-222, with life expectancy, the most integrative index of population health. The results of this study show that the different sources of natural radiation display positive correlative links to life expectancy, which is in line with the hypothesis of radiation hormesis.


Assuntos
Radiação de Fundo , Proteção Radiológica , Hormese , Expectativa de Vida , Doses de Radiação , Proteção Radiológica/métodos
4.
Biogerontology ; 22(2): 189-195, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33479810

RESUMO

The current linear no-threshold paradigm assumes that any exposure to ionizing radiation carries some risk, thus every effort should be made to maintain the exposures as low as possible. We examined whether background radiation impacts human longevity and cancer mortality. Our data covered the entire US population of the 3139 US counties, encompassing over 320 million people. This is the first large-scale study which takes into account the two major sources of background radiation (terrestrial radiation and cosmic radiation), covering the entire US population. Here, we show that life expectancy, the most integrative index of population health, was approximately 2.5 years longer in people living in areas with a relatively high vs. low background radiation. (≥ 180 mrem/year and ≤ 100 mrem/year, respectively; p < 0.005; 95% confidence interval [CI]). This radiation-induced lifespan extension could to a great extent be associated with the decrease in cancer mortality rate observed for several common cancers (lung, pancreas and colon cancers for both genders, and brain and bladder cancers for males only; p < 0.05; 95% CI). Exposure to a high background radiation displays clear beneficial health effects in humans. These hormetic effects provide clear indications for re-considering the linear no-threshold paradigm, at least within the natural range of low-dose radiation.


Assuntos
Longevidade , Neoplasias Induzidas por Radiação , Radiação de Fundo , Feminino , Hormese , Humanos , Masculino
5.
Mol Psychiatry ; 26(8): 4448-4463, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31827249

RESUMO

Schizophrenia is a neurodevelopmental disease with a mixed genetic and environmental aetiology. Impaired adult hippocampal neurogenesis was suggested both as a pathophysiological mechanism and as a target for therapy. In the present study, we utilized intracerebroventricular transplantation of bone marrow-derived mesenchymal stem cells (MSC) as a means to enhance hippocampal neurogenesis in the ketamine-induced neurodevelopmental murine model for schizophrenia. Syngeneic MSC have successfully engrafted and survived for up to 3 months following transplantation. Improvement in social novelty preference and prepulse inhibition was noted after transplantation. In parallel to behavioural improvement, increased hippocampal neurogenesis as reflected in the numbers of doublecortin expressing neurons in the dentate gyrus and gene expression was noted both 2 weeks following transplantation as well as 3 months later compared with nontreated animals. An independent aging effect was observed for both behaviour and neurogenesis, which was attenuated by MSC treatment. As opposed to MSC treatment, short-term treatment with clozapine was efficient only during treatment and diminished 3 months later. Interestingly, while shortly after transplantation (2 weeks) behavioural improvement was correlated mainly to FGF2 gene expression, 3 months later it was mainly correlated to the expression of the notch ligand DLL1. This suggests that long-term effect during ageing may depend on neural stem cell self-renewal. We conclude that a single intracerebroventricular injection of bone marrow-derived MSC can suffice for long-term reversal of changes in adult hippocampal neurogenesis and improve schizophrenia-like behavioural phenotype inflicted by developmental exposure to ketamine in mice.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Esquizofrenia , Animais , Hipocampo , Camundongos , Neurogênese , Esquizofrenia/terapia
6.
Aging Cell ; 19(7): e13158, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32515539

RESUMO

One important question in aging research is how differences in genomics and transcriptomics determine the maximum lifespan in various species. Despite recent progress, much is still unclear on the topic, partly due to the lack of samples in nonmodel organisms and due to challenges in direct comparisons of transcriptomes from different species. The novel ranking-based method that we employ here is used to analyze gene expression in the gray whale and compare its de novo assembled transcriptome with that of other long- and short-lived mammals. Gray whales are among the top 1% longest-lived mammals. Despite the extreme environment, or maybe due to a remarkable adaptation to its habitat (intermittent hypoxia, Arctic water, and high pressure), gray whales reach at least the age of 77 years. In this work, we show that long-lived mammals share common gene expression patterns between themselves, including high expression of DNA maintenance and repair, ubiquitination, apoptosis, and immune responses. Additionally, the level of expression for gray whale orthologs of pro- and anti-longevity genes found in model organisms is in support of their alleged role and direction in lifespan determination. Remarkably, among highly expressed pro-longevity genes many are stress-related, reflecting an adaptation to extreme environmental conditions. The conducted analysis suggests that the gray whale potentially possesses high resistance to cancer and stress, at least in part ensuring its longevity. This new transcriptome assembly also provides important resources to support the efforts of maintaining the endangered population of gray whales.


Assuntos
Reparo do DNA/genética , Longevidade/genética , Transcriptoma/genética , Ubiquitinação/genética , Animais , Baleias
7.
Genome Biol ; 21(1): 91, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264951

RESUMO

BACKGROUND: Cellular senescence, a permanent state of replicative arrest in otherwise proliferating cells, is a hallmark of aging and has been linked to aging-related diseases. Many genes play a role in cellular senescence, yet a comprehensive understanding of its pathways is still lacking. RESULTS: We develop CellAge (http://genomics.senescence.info/cells), a manually curated database of 279 human genes driving cellular senescence, and perform various integrative analyses. Genes inducing cellular senescence tend to be overexpressed with age in human tissues and are significantly overrepresented in anti-longevity and tumor-suppressor genes, while genes inhibiting cellular senescence overlap with pro-longevity and oncogenes. Furthermore, cellular senescence genes are strongly conserved in mammals but not in invertebrates. We also build cellular senescence protein-protein interaction and co-expression networks. Clusters in the networks are enriched for cell cycle and immunological processes. Network topological parameters also reveal novel potential cellular senescence regulators. Using siRNAs, we observe that all 26 candidates tested induce at least one marker of senescence with 13 genes (C9orf40, CDC25A, CDCA4, CKAP2, GTF3C4, HAUS4, IMMT, MCM7, MTHFD2, MYBL2, NEK2, NIPA2, and TCEB3) decreasing cell number, activating p16/p21, and undergoing morphological changes that resemble cellular senescence. CONCLUSIONS: Overall, our work provides a benchmark resource for researchers to study cellular senescence, and our systems biology analyses reveal new insights and gene regulators of cellular senescence.


Assuntos
Envelhecimento/genética , Senescência Celular/genética , Bases de Dados Genéticas , Animais , Doença/genética , Evolução Molecular , Expressão Gênica , Genes Neoplásicos , Humanos , Longevidade/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Mapeamento de Interação de Proteínas , RNA-Seq , Biologia de Sistemas
8.
Aging (Albany NY) ; 11(9): 2889-2897, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085799

RESUMO

Here, we reported for the first time an increased expression of c-Met protein in primary cultures of human dermal and pulmonary fibroblasts of late passages. This suggests that c-Met could serve as an early marker of cellular senescence (CS). The levels of c-Met-related signaling proteins phospho-Akt and Stat3 were also increased in (pre)senescent fibroblasts. Considering the anti-apoptotic activity of Akt and the involvement of Stat3 in mediating the effects of proinflammatory cytokines, the findings of this study indicate that c-Met could contribute through its downstream targets or partners to at least two major phenotypical features of CS - resistance to apoptosis and senescence-associated secretory phenotype.


Assuntos
Senescência Celular/fisiologia , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-met , Biomarcadores , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
9.
Oncotarget ; 8(11): 17443-17452, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28407680

RESUMO

Neurodevelopmental impairment can affect lifelong brain functions such as cognitive and social behaviour, and may contribute to aging-related changes of these functions. In the present study, we hypothesized that bone marrow-derived mesenchymal stem cells (MSC) administration may repair neurodevelopmental behavioural deficits by modulating adult hippocampal neurogenesis. Indeed, postnatal intracerebral transplantation of MSC has restored cognitive and social behaviour in mice prenatally exposed to valproic acid (VPA). MSC transplantation also restored post-developmental hippocampal neurogenesis, which was impaired in VPA-exposed mice displaying delayed differentiation and maturation of newly formed neurons in the granular cell layer of the dentate gyrus. Importantly, a statistically significant correlation was found between neuronal differentiation scores and behavioural scores, suggesting a mechanistic relation between the two. We thus conclude that post-developmental MSC administration can overcome prenatal neurodevelopmental deficits and restore cognitive and social behaviours via modulation of hippocampal adult neurogenesis.


Assuntos
Hipocampo , Transplante de Células-Tronco Mesenquimais/métodos , Transtornos do Neurodesenvolvimento/complicações , Neurogênese , Efeitos Tardios da Exposição Pré-Natal/terapia , Animais , Diferenciação Celular/fisiologia , Modelos Animais de Doenças , Proteína Duplacortina , Feminino , GABAérgicos/toxicidade , Imuno-Histoquímica , Aprendizagem em Labirinto , Camundongos , Transtornos do Neurodesenvolvimento/induzido quimicamente , Neurogênese/fisiologia , Neurônios/citologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Comportamento Social , Ácido Valproico/toxicidade
10.
Biogerontology ; 18(4): 525-533, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28251405

RESUMO

The role of telomere shortening in the induction of replicative cellular senescence (CS) is well known and as a result, the involvement of telomerase and in particular its catalytic subunit, the telomerase reverse transcriptase (TERT) in CS has also been investigated. However, the majority of studies were conducted on cells that generally express high levels of TERT (cancer and immortalized cells) while the role of telomerase in CS in normal cells has been investigated to a much lesser extent. In particular, it was reported that active TERT is expressed in early passages of cultured human keratinocytes but rapidly diminished towards entry to CS, without telomere shortening. With the putative importance of TERT/telomerase in CS and the aging process in mind, we investigated the expression of TERT and telomerase activity in primary cultures of adult human dermal fibroblasts (HDFs) in the in vitro model of replicative CS. We found that (i) HDFs expressed active TERT; (ii) TERT protein levels and telomerase activity were markedly decreased in senescent HDFs; and (iii) the reduction of TERT in the soluble fraction was more pronounced than in the DNA-bound one. The results suggest the importance of the non-canonical (telomere-unrelated) functions of TERT in cellular senescence.


Assuntos
Senescência Celular , DNA/metabolismo , Fibroblastos/enzimologia , Telomerase/metabolismo , Encurtamento do Telômero , Telômero/enzimologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Humanos , Solubilidade , Fatores de Tempo
11.
Clin Cancer Res ; 21(22): 5164-72, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26199387

RESUMO

PURPOSE: There is evidence that Hodgkin Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL) could display some molecular and morphologic markers of cellular senescence (CS). We hypothesized that CS mechanisms may have potential prognostic relevance in cHL and investigated whether the expression of the well-established CS biomarkers p21(CIP1/WAF1) and p16(INK4a) by HRS cells might be predictive of the probability of event-free survival (EFS). EXPERIMENTAL DESIGN: The study analyzed a retrospective cohort of 147 patients and the results were validated on a cohort of 91 patients independently diagnosed and treated in a different institution. p16(INK4a) and p21(CIP1/WAF1) were categorized as dichotomous variables (< or ≥ 30% of HRS cells at diagnosis) and evaluated in univariate and multivariate analysis. RESULTS: Both molecules were independent prognostic factors. A positive staining of one of the two molecules in more than 30% HRS cells predicted a better EFS (P < 0.01). p16(INK4a)/p21(CIP1/WAF1) together as a unique categorical variable (both <30%, either <30%, both ≥ 30%) sorted out three prognostic groups with better, intermediate, or worse outcome either overall or within I-II, bulky and advanced stages. The presence or the lack of the robust expression of p21(CIP1/WAF1) and/or p16(INK4a) defined the prognosis in our series. CONCLUSIONS: These findings point to (i) the relevance of CS-related mechanisms in cHL, and to (ii) the prognostic value of a simple, reproducible, and low-cost immunohistochemical evaluation of p16(INK4a) and p21(CIP1/WAF1) expression.


Assuntos
Biomarcadores Tumorais/biossíntese , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Doença de Hodgkin/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Resultado do Tratamento
12.
Aging (Albany NY) ; 7(3): 167-76, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25960543

RESUMO

Does the longevity phenotype offer an advantage in wound healing (WH)? In an attempt to answer this question, we explored skin wound healing in the long-lived transgenic αMUPA mice, a unique model of genetically extended life span. These mice spontaneously eat less, preserve their body mass, are more resistant to spontaneous and induced tumorigenesis and live longer, thus greatly mimicking the effects of caloric restriction (CR). We found that αMUPA mice showed a much slower age-related decline in the rate of WH than their wild-type counterparts (FVB/N). After full closure of the wound, gene expression in the skin of old αMUPA mice returned close to basal levels. In contrast, old FVB/N mice still exhibited significant upregulation of genes associated with growth-promoting pathways, apoptosis and cell-cell/cell-extra cellular matrix interaction, indicating an ongoing tissue remodeling or an inability to properly shut down the repair process. It appears that the CR-like longevity phenotype is associated with more balanced and efficient WH mechanisms in old age, which could ensure a long-term survival advantage.


Assuntos
Longevidade , Ativador de Plasminogênio Tipo Uroquinase/genética , Cicatrização , Fatores Etários , Animais , Movimento Celular , Feminino , Fibroblastos/fisiologia , Expressão Gênica , Camundongos Transgênicos , Pele/patologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
13.
Ageing Res Rev ; 19: 34-42, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25462193

RESUMO

To date, most studies of Shc family of signaling adaptor proteins have been focused on the near-ubiquitously expressed ShcA, indicating its relevance to age-related diseases and longevity. Although the role of the neuronal ShcC protein is much less investigated, accumulated evidence suggests its importance for neuroprotection against such aging-associated conditions as brain ischemia and oxidative stress. Here, we summarize more than decade of studies on the ShcC expression and function in normal brain, age-related brain pathologies and immune disorders with a focus on the interactions of ShcC with signaling proteins/pathways, and the possible implications of these interactions for changes associated with aging.


Assuntos
Envelhecimento/fisiologia , Encéfalo/crescimento & desenvolvimento , Proteínas Adaptadoras da Sinalização Shc/fisiologia , Animais , Neoplasias Encefálicas/fisiopatologia , Humanos
15.
Rejuvenation Res ; 17(2): 134-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24094064

RESUMO

Plants growing in the Judea region are widely used in traditional medicine. This phytogeographic zone stands out in its climatic conditions and biodiversity. Consequently, both endemic and widely distributed Mediterranean plants growing in the area have unique chemotypes characterized by accumulation of relatively high levels of phytosteroids. Our comprehensive analysis revealed that many of the plants growing in the Judea region may hold a geroprotective potential. With this in mind, we undertook a wide screen of dozens of candidate herbal extracts for their cell protective, wound-healing, anti-inflammatory, and anti-cancer activities. The results obtained thus far have clearly shown that the extracts tested (1) protect normal human fibroblasts from genotoxic stress (prevent DNA double-strand beaks, increase cell survival and reduce the number of cells undergoing cellular senescence), (2) decrease secretion of pro-inflammatory cytokines, (3) promote wound healing, and (4) exert more pronounced cytotoxicity toward cancer cells.


Assuntos
Envelhecimento/efeitos dos fármacos , Plantas Medicinais/química , Substâncias Protetoras/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células , Citocinas/metabolismo , Citoproteção/efeitos dos fármacos , Dano ao DNA , Derme/citologia , Etoposídeo/farmacologia , Fibroblastos/citologia , Prepúcio do Pênis/citologia , Humanos , Mediadores da Inflamação/metabolismo , Israel , Masculino , Extratos Vegetais/farmacologia , Fatores de Tempo , Cicatrização/efeitos dos fármacos
16.
Ageing Res Rev ; 12(2): 661-84, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22353384

RESUMO

Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.


Assuntos
Senilidade Prematura/genética , Envelhecimento/genética , Dano ao DNA , Reparo do DNA , Longevidade/genética , Mutação , Animais , Senescência Celular/genética , Evolução Clonal , Humanos , Modelos Genéticos , Mutagênese/efeitos dos fármacos , Mutagênicos/farmacologia , Células-Tronco/fisiologia
17.
Ageing Res Rev ; 11(1): 51-66, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21986581

RESUMO

The Gadd45 proteins have been intensively studied, in view of their important role in key cellular processes. Indeed, the Gadd45 proteins stand at the crossroad of the cell fates by controlling the balance between cell (DNA) repair, eliminating (apoptosis) or preventing the expansion of potentially dangerous cells (cell cycle arrest, cellular senescence), and maintaining the stem cell pool. However, the biogerontological aspects have not thus far received sufficient attention. Here we analyzed the pathways and modes of action by which Gadd45 members are involved in aging, longevity and age-related diseases. Because of their pleiotropic action, a decreased inducibility of Gadd45 members may have far-reaching consequences including genome instability, accumulation of DNA damage, and disorders in cellular homeostasis - all of which may eventually contribute to the aging process and age-related disorders (promotion of tumorigenesis, immune disorders, insulin resistance and reduced responsiveness to stress). Most recently, the dGadd45 gene has been identified as a longevity regulator in Drosophila. Although further wide-scale research is warranted, it is becoming increasingly clear that Gadd45s are highly relevant to aging, age-related diseases (ARDs) and to the control of life span, suggesting them as potential therapeutic targets in ARDs and pro-longevity interventions.


Assuntos
Envelhecimento/patologia , Senescência Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Longevidade/fisiologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/fisiologia , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Morte Celular/genética , Senescência Celular/genética , Dano ao DNA/genética , Instabilidade Genômica/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Longevidade/genética , Proteínas GADD45
18.
Aging (Albany NY) ; 3(12): 1178-91, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22184282

RESUMO

The role of cellular senescence (CS) in age-related diseases (ARDs) is a quickly emerging topic in aging research. Our comprehensive data mining revealed over 250 genes tightly associated with CS. Using systems biology tools, we found that CS is closely interconnected with aging, longevity and ARDs, either by sharing common genes and regulators or by protein-protein interactions and eventually by common signaling pathways. The most enriched pathways across CS, ARDs and aging-associated conditions (oxidative stress and chronic inflammation) are growth-promoting pathways and the pathways responsible for cell-extracellular matrix interactions and stress response. Of note, the patterns of evolutionary conservation of CS and cancer genes showed a high degree of similarity, suggesting the co-evolution of these two phenomena. Moreover, cancer genes and microRNAs seem to stand at the crossroad between CS and ARDs. Our analysis also provides the basis for new predictions: the genes common to both cancer and other ARD(s) are highly likely candidates to be involved in CS and vice versa. Altogether, this study shows that there are multiple links between CS, aging, longevity and ARDs, suggesting a common molecular basis for all these conditions. Modulating CS may represent a potential pro-longevity and anti-ARDs therapeutic strategy.


Assuntos
Senescência Celular/fisiologia , Longevidade/fisiologia , Doença de Alzheimer , Aterosclerose , Doença Crônica , Biologia Computacional , Bases de Dados Factuais , Diabetes Mellitus Tipo 2 , Regulação da Expressão Gênica/fisiologia , Humanos , Inflamação , MicroRNAs , Neoplasias , Estresse Oxidativo , Mapas de Interação de Proteínas , Transdução de Sinais , Biologia de Sistemas
19.
Biogerontology ; 12(6): 591-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21667230

RESUMO

Wound healing (WH) is a fundamental biological process. Is it associated with a longevity or aging phenotype? In an attempt to answer this question, we compared the established mouse models with genetically modified life span and also an altered rate of WH in the skin. Our analysis showed that the rate of skin WH in advanced ages (but not in the young animals) may be used as a marker for biological age, i.e., to be indicative of the longevity or aging phenotype. The ability to preserve the rate of skin WH up to an old age appears to be associated with a longevity phenotype, whereas a decline in WH-with an aging phenotype. In the young, this relationship is more complex and might even be inversed. While the aging process is likely to cause wounds to heal slowly, an altered WH rate in younger animals could indicate a different cellular proliferation and/or migration capacity, which is likely to affect other major processes such as the onset and progression of cancer. As a point for future studies on WH and longevity, using only young animals might yield confusing or misleading results, and therefore including older animals in the analysis is encouraged.


Assuntos
Envelhecimento/patologia , Envelhecimento da Pele/patologia , Pele/patologia , Cicatrização , Fatores Etários , Envelhecimento/genética , Animais , Procedimentos Cirúrgicos Dermatológicos , Genótipo , Longevidade , Camundongos , Camundongos Transgênicos , Modelos Animais , Fenótipo , Envelhecimento da Pele/genética , Fatores de Tempo , Cicatrização/genética
20.
Rejuvenation Res ; 9(2): 207-10, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16706644

RESUMO

Aging should be considered a major risk factor for life-threatening degenerative pathologies including atherosclerosis, cancer, neurodegeneration, diabetes type II, osteoporosis, and sarcopenia. Although an apparent paradox, it appears that the most effective way to delay or even to avert age-related diseases is to live longer. Common changes in the epigenetic control of gene expression may be one of the central mechanisms behind both aging and age-associated pathologies. If so, epigenetic interventions may serve in a twofold manner: (a) to extend the lifespan and (b) cure age-related degenerative diseases. Currently predominant disease-oriented paradigm should be reconsidered toward aging/longevity oriented.


Assuntos
Envelhecimento/fisiologia , Metilação de DNA , Diabetes Mellitus Tipo 2/fisiopatologia , Epigênese Genética , Humanos , Longevidade/fisiologia , Modelos Teóricos , Obesidade/fisiopatologia , Síndrome do Desconforto Respiratório/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA