Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613449

RESUMO

Olive oil phenols (OOPs) are associated with the prevention of many human cancers. Some of these have been shown to inhibit cell proliferation and induce apoptosis. However, no systematic comparative study exists for all the investigated compounds under the same conditions, due to difficulties in their isolation or synthesis. Herein are presented innovative methods for large-scale selective extraction of six major secoiridoids from olive oil or leaves enabling their detailed investigation. The cytotoxic/antiproliferative bioactivity of these six compounds was evaluated on sixteen human cancer cell lines originating from eight different tissues. Cell viability with half-maximal effective concentrations (EC50) was evaluated after 72 h treatments. Antiproliferative and pro-apoptotic effects were also assessed for the most bioactive compounds (EC50 ≤ 50 µM). Oleocanthal (1) showed the strongest antiproliferative/cytotoxic activity in most cancer cell lines (EC50: 9−20 µM). The relative effectiveness of the six OOPs was: oleocanthal (1) > oleuropein aglycone (3a,b) > ligstroside aglycone (4a,b) > oleacein (2) > oleomissional (6a,b,c) > oleocanthalic acid (7). This is the first detailed study comparing the bioactivity of six OOPs in such a wide array of cancer cell lines, providing a reference for their relative antiproliferative/cytotoxic effect in the investigated cancers.


Assuntos
Antineoplásicos , Neoplasias , Olea , Humanos , Iridoides/farmacologia , Azeite de Oliva/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular
2.
PLoS One ; 16(6): e0253458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185793

RESUMO

L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Dopa Descarboxilase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/genética , Área Sob a Curva , Descarboxilases de Aminoácido-L-Aromático , COVID-19/virologia , Dopa Descarboxilase/genética , Regulação para Baixo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Eritropoetina/genética , Eritropoetina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Curva ROC , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Regulação para Cima , Carga Viral
3.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32972019

RESUMO

Hepatitis C virus (HCV) genome translation is initiated via an internal ribosome entry site (IRES) embedded in the 5'-untranslated region (5'UTR). We have earlier shown that the conserved RNA stem-loops (SL) SL47 and SL87 of the HCV core-encoding region are important for viral genome translation in cell culture and in vivo. Moreover, we have reported that an open reading frame overlapping the core gene in the +1 frame (core+1 ORF) encodes alternative translation products, including a protein initiated at the internal AUG codons 85/87 of this frame (nt 597-599 and 603-605), downstream of SL87, which is designated core+1/Short (core+1/S). Here, we provide evidence for SL47 and SL87 possessing a novel cis-acting element that directs the internal translation initiation of core+1/S. Firstly, using a bicistronic dual luciferase reporter system and RNA-transfection experiments, we found that nucleotides 344-596 of the HCV genotype-1a and -2a genomes support translation initiation at the core+1 frame AUG codons 85/87, when present in the sense but not the opposite orientation. Secondly, site-directed mutagenesis combined with an analysis of ribosome-HCV RNA association elucidated that SL47 and SL87 are essential for this alternative translation mechanism. Finally, experiments using cells transfected with JFH1 replicons or infected with virus-like particles showed that core+1/S expression is independent from the 5'UTR IRES and does not utilize the polyprotein initiation codon, but it requires intact SL47 and SL87 structures. Thus, SL47 and SL87, apart from their role in viral polyprotein translation, are necessary elements for mediating the internal translation initiation of the alternative core+1/S ORF.


Assuntos
Hepacivirus/metabolismo , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Iniciação Traducional da Cadeia Peptídica , RNA Viral/metabolismo , Proteínas do Core Viral/biossíntese , Linhagem Celular Tumoral , Códon de Iniciação , Hepacivirus/genética , Humanos , RNA Viral/genética , Proteínas do Core Viral/genética
4.
Biochimie ; 177: 78-86, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32835737

RESUMO

l-Dopa Decarboxylase (DDC) is a pyridoxal requiring enzyme that catalyzes the decarboxylation of L-3,4-dihydroxyphenylalanine (l-Dopa) to Dopamine (DA). The function of DDC in physiological and pathological biochemical pathways remains poorly understood, while the function and regulation of human DDC isoforms is almost completely elusive. We have shown that Annexin V, a fundamental apoptosis marker, is an inhibitor of l-Dopa decarboxylase activity. Here we show the interaction of both the full-length DDC and the truncated isoform alternative DDC (Alt-DDC) with Annexin V in human tissue and cell lines. Interestingly, DDC isoform expression is enhanced or remains unaffected following staurosporine (STS) treatment, despite increased levels of cytotoxicity and apoptosis. The findings presented here provide novel insights concerning the involvement of DDC in programmed cell death.


Assuntos
Anexina A5/metabolismo , Anexina A5/farmacologia , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Descarboxilases de Aminoácido-L-Aromático/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Cobalto/toxicidade , Cricetinae , Feminino , Humanos , Placenta/metabolismo , Gravidez , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estaurosporina/toxicidade
5.
Bioorg Chem ; 102: 104089, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32717691

RESUMO

Novel symmetric molecules, bearing a benzidine prolinamide core, two terminal carbamate caps of variable sizes and nature, including natural and unnatural amino acids were developed. Several terminal N-carbamate substituents of the core structure, ranging from linear methyl, ethyl and butyl groups to branching isobutyl group; and an aromatic substituent were also synthesized. Series 1 has hydrophobic AA residues, namely S and R phenylglycine and a terminal carbamate capping group, whereas Series 2 bears sulphur containing amino acids, specifically S and R methionine and the natural R methylcysteine. The novel compounds were tested for their inhibitory activity (EC50) and their cytotoxicity (CC50), using an HCV 1b (Con1) reporter replicon cell line. Compound 4 with the unnatural capping residue, bearing d-Phenylglycine amino acid residue and N-isobutyloxycarbonyl capping group, was the most active within the two series, with EC50 = 0.0067 nM. Moreover, it showed high SI50 > 14788524 and was not cytotoxic at the highest tested concentration (100 µΜ), indicating its safety profile. Compound 4 also inhibited HCV genotypes 2a, 3a and 4a. Compared to the clinically approved NS5A inhibitor Daclatasvir, compound 4 shows higher activity against genotypes 1b and 3a, as well as improved safety profile.


Assuntos
Aminoácidos/farmacologia , Antivirais/farmacologia , Benzidinas/farmacologia , Carbamatos/farmacologia , Hepacivirus/efeitos dos fármacos , Aminoácidos/química , Antivirais/síntese química , Antivirais/química , Benzidinas/síntese química , Benzidinas/química , Carbamatos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , RNA Viral/efeitos dos fármacos , Estereoisomerismo , Relação Estrutura-Atividade
6.
Cells ; 8(8)2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387309

RESUMO

l-dopa decarboxylase (DDC) that catalyzes the biosynthesis of bioactive amines, such as dopamine and serotonin, is expressed in the nervous system and peripheral tissues, including the liver, where its physiological role remains unknown. Recently, we reported a physical and functional interaction of DDC with the major signaling regulator phosphoinosite-3-kinase (PI3K). Here, we provide compelling evidence for the involvement of DDC in viral infections. Studying dengue (DENV) and hepatitis C (HCV) virus infection in hepatocytes and HCV replication in liver samples of infected patients, we observed a negative association between DDC and viral replication. Specifically, replication of both viruses reduced the levels of DDC mRNA and the ~120 kDa SDS-resistant DDC immunoreactive functional complex, concomitant with a PI3K-dependent accumulation of the ~50 kDa DDC monomer. Moreover, viral infection inhibited PI3K-DDC association, while DDC did not colocalize with viral replication sites. DDC overexpression suppressed DENV and HCV RNA replication, while DDC enzymatic inhibition enhanced viral replication and infectivity and affected DENV-induced cell death. Consistently, we observed an inverse correlation between DDC mRNA and HCV RNA levels in liver biopsies from chronically infected patients. These data reveal a novel relationship between DDC and Flaviviridae replication cycle and the role of PI3K in this process.


Assuntos
Dengue/metabolismo , Dopa Descarboxilase/metabolismo , Hepatite C/metabolismo , Fígado/enzimologia , Replicação Viral , Animais , Linhagem Celular Tumoral , Chlorocebus aethiops , Dengue/virologia , Vírus da Dengue/patogenicidade , Vírus da Dengue/fisiologia , Dopa Descarboxilase/genética , Hepacivirus/patogenicidade , Hepacivirus/fisiologia , Hepatite C/virologia , Humanos , Fígado/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Células Vero
7.
Biochimie ; 160: 76-87, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30796964

RESUMO

L-Dopa decarboxylase (DDC) catalyzes the decarboxylation of L-Dopa to dopamine and 5-hydroxytryptophan (5-HTP) to serotonin. Although DDC has been purified from a variety of peripheral organs, including the liver, kidney and pancreas, the physiological significance of the peripherally expressed enzyme is not yet fully understood. DDC has been considered as a potential novel biomarker for various types of cancer, however, the role of DDC in the development of hepatocellular carcinoma (HCC) remains to be evaluated. Phosphatidylinositol 3-kinase (PI3K), on the other hand, has been shown to play a key role in the tumorigenesis, proliferation, metastasis, apoptosis, and angiogenesis of HCC by regulating gene expression. We initially identified the interaction of DDC with PI3K by means of the phage display methodology. This association was further confirmed in human hepatocellular carcinoma cell lines, human embryonic kidney cells, human neuroblastoma cells, as well as mouse brain, by the use of specific antibodies raised against DDC and PI3K. Functional aspects of the above interaction were studied upon treatment with the DDC inhibitor carbidopa and the PI3K inhibitor LY294002. Interestingly, our data demonstrate the expression of the neuronal type DDC mRNA in HCC cells. The present investigation provides new evidence on the possible link of DDC with the PI3K pathway, underlining the biological significance of this complex enzyme.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Carbidopa/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neuroblastoma/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores das Descarboxilases de Aminoácidos Aromáticos/farmacologia , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Biblioteca de Peptídeos , Fosfatidilinositol 3-Quinases/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA