Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Health Phys ; 119(1): 59-63, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32371852

RESUMO

The NATO HFM 291 research task group (RTG) on "Ionizing Radiation Bioeffects and Countermeasures" represents a group of scientists from military and civilian academic and scientific institutions primarily working in the field of radiobiology. Among other tasks, the RTG intends to extend their work on risk estimation and communication to bridge the gap in appropriate judgment of health risks given a certain radiation exposure. The group has no explicit psychological background but an expertise in radiobiology and risk assessment. The group believes that, as one of the essential first steps in risk communication, it is required to put radiation risk into perspective. Radiation risk requires a weight in comparison to already-known risks. What we envision is to Compare Radiation exposure-associated health Risks (CRRis App) with daily life health risks caused by other common exposures such as cigarette smoking, driving a car, etc. Within this paper, we provide (1) an overview of health risks after radiation exposure, (2) an explanation of the task and concept of an envisioned CRRis App, (3) an overview of existing software tools related to this issue, (4) a summary of inputs and discussions with experts in the field of radiation protection and risk communication during the ConRad conference, and finally, (5) identification of the next steps in the development of the App.


Assuntos
Aplicativos Móveis , Exposição à Radiação/efeitos adversos , Lesões por Radiação/diagnóstico , Medição de Risco/métodos , Humanos , Medicina Militar , Neoplasias Induzidas por Radiação/diagnóstico , Exposição Ocupacional/efeitos adversos , Doses de Radiação , Proteção Radiológica , Radiação Ionizante , Radiobiologia
2.
Health Phys ; 115(1): 126-139, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787439

RESUMO

In the last decades, technological development has led to an increasing use of devices and systems based on microwave radiation. The increased employment of these devices has elicited questions about the potential long-term health consequences associated with microwave radiation exposure. From this perspective, biological effects of microwave radiation have been the focus of many studies, but the reported scientific data are unclear and contradictory. The aim of this study is to evaluate the potential genotoxic and cellular effects associated with in vitro exposure of human fetal and adult fibroblasts to microwave radiation at the frequency of 25 GHz. For this purpose, several genetic and biological end points were evaluated. Results obtained from comet assay, phosphorylation of H2AX histone, and antikinetochore antibody (CREST)-negative micronuclei frequency excluded direct DNA damage to human fetal and adult fibroblasts exposed to microwaves. No induction of apoptosis or changes in prosurvival signalling proteins were detected. Moreover, CREST analysis showed for both the cell lines an increase in the total number of micronuclei and centromere positive micronuclei in exposed samples, indicating aneuploidy induction due to chromosome loss.


Assuntos
Feto/patologia , Fibroblastos/patologia , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Micro-Ondas/efeitos adversos , Adulto , Aneuploidia , Células Cultivadas , Ensaio Cometa , Dano ao DNA/efeitos da radiação , Feto/efeitos da radiação , Fibroblastos/efeitos da radiação , Histonas/genética , Humanos , Testes para Micronúcleos
3.
Environ Mol Mutagen ; 59(6): 476-487, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29602275

RESUMO

The applications of Terahertz (THz) technologies have significantly developed in recent years, and the complete understanding of the biological effects of exposure to THz radiation is becoming increasingly important. In a previous study, we found that THz radiation induced genomic damage in fetal fibroblasts. Although these cells demonstrated to be a useful model, exposure of human foetuses to THz radiation is highly improbable. Conversely, THz irradiation of adult dermal tissues is cause of possible concern for some professional and nonprofessional categories. Therefore, we extended our study to the investigation of the effects of THz radiation on adult fibroblasts (HDF). In this work, the effects of THz exposure on HDF cells genome integrity, cell cycle, cytological ultrastructure and proteins expression were assessed. Results of centromere-negative micronuclei frequencies, phosphorylation of H2AX histone, and telomere length modulation indicated no induction of DNA damage. Concordantly, no changes in the expression of proteins associated with DNA damage sensing and repair were detected. Conversely, our results showed an increase of centromere-positive micronuclei frequencies and chromosomal nondisjunction events, indicating induction of aneuploidy. Therefore, our results indicate that THz radiation exposure may affect genome integrity through aneugenic effects, and not by DNA breakage. Our findings are compared to published studies, and possible biophysical mechanisms are discussed. Environ. Mol. Mutagen. 59:476-487, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Aneuploidia , Aberrações Cromossômicas/efeitos da radiação , Fibroblastos/efeitos da radiação , Radiação Terahertz/efeitos adversos , Adulto , Ciclo Celular/efeitos da radiação , Linhagem Celular , Dano ao DNA/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Instabilidade Genômica/efeitos da radiação , Humanos , Testes para Micronúcleos , Homeostase do Telômero/efeitos da radiação
4.
Artigo em Inglês | MEDLINE | ID: mdl-26520385

RESUMO

In recent years, terahertz (THz) radiation has been widely used in a variety of applications: medical, security, telecommunications and military areas. However, few data are available on the biological effects of this type of electromagnetic radiation and the reported results, using different genetic or cellular assays, are quite discordant. This multidisciplinary study focuses on potential genotoxic and cytotoxic effects, evaluated by several end-points, associated with THz radiation. For this purpose, in vitro exposure of human foetal fibroblasts to low frequency THz radiation (0.1-0.15THz) was performed using a Compact Free Electron Laser. We did not observe an induction of DNA damage evaluated by Comet assay, phosphorylation of H2AX histone or telomere length modulation. In addiction, no induction of apoptosis or changes in pro-survival signalling proteins were detected. Moreover, our results indicated an increase in the total number of micronuclei and centromere positive micronuclei induction evaluated by CREST analysis, indicating that THz radiation could induce aneugenic rather than clastogenic effects, probably leading to chromosome loss. Furthermore, an increase of actin polymerization observed by ultrastructural analysis after THz irradiation, supports the hypothesis that an abnormal assembly of spindle proteins could lead to the observed chromosomal malsegregation.


Assuntos
Actinas/metabolismo , Centrômero/efeitos da radiação , Segregação de Cromossomos/efeitos da radiação , Fibroblastos/efeitos da radiação , Micronúcleos com Defeito Cromossômico/estatística & dados numéricos , Aneuploidia , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Centrômero/genética , Dano ao DNA , Fibroblastos/metabolismo , Prepúcio do Pênis/citologia , Prepúcio do Pênis/embriologia , Histonas/metabolismo , Humanos , Técnicas In Vitro , Masculino , Fosforilação , Radiação Terahertz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA