Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 11: 14, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082278

RESUMO

Pistachio Bushy Top Syndrome (PBTS) is a recently emerged disease that has strongly impacted the pistachio industry in California, Arizona, and New Mexico. The disease is caused by two bacteria, designated PBTS1 that is related to Rhodococcus corynebacterioides and PBTS2 that belongs to the species R. fascians. Here, we assessed the pathogenic character of the causative agents and examined their chromosomal sequences to predict the presence of particular functions that might contribute to the observed co-occurrence and their effect on plant hosts. In diverse assays, we confirmed the pathogenicity of the strains on "UCB-1" pistachio rootstock and showed that they can also impact the development of tobacco species, but concurrently inconsistencies in the ability to induce symptoms were revealed. We additionally evidence that fas genes are present only in a subpopulation of pure PBTS1 and PBTS2 cultures after growth on synthetic media, that these genes are easily lost upon cultivation in rich media, and that they are enriched for in an in planta environment. Analysis of the chromosomal sequences indicated that PBTS1 and PBTS2 might have complementary activities that would support niche partitioning. Growth experiments showed that the nutrient utilization pattern of both PBTS bacteria was not identical, thus avoiding co-inhabitant competition. PBTS2 appeared to have the potential to positively affect the habitat fitness of PBTS1 by improving its resistance against increased concentrations of copper and penicillins. Finally, mining the chromosomes of PBTS1 and PBTS2 suggested that the bacteria could produce cytokinins, auxins, and plant growth-stimulating volatiles and that PBTS2 might interfere with ethylene levels, in support of their impact on plant development. Subsequent experimentation supported these in silico predictions. Altogether, our data provide an explanation for the observed pathogenic behavior and unveil part of the strategies used by PBTS1 and PBTS2 to interact with plants.

2.
Sci Rep ; 6: 27144, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250236

RESUMO

Streptomyces scabies is an economically important plant pathogen well-known for damaging root and tuber crops by causing scab lesions. Thaxtomin A is the main causative agent responsible for the pathogenicity of S. scabies and cello-oligosaccharides are environmental triggers that induce the production of this phytotoxin. How cello-oligosaccharides are sensed or transported in order to induce the virulent behavior of S. scabies? Here we report that the cellobiose and cellotriose binding protein CebE, and MsiK, the ATPase providing energy for carbohydrates transport, are the protagonists of the cello-oligosaccharide mediated induction of thaxtomin production in S. scabies. Our work provides the first example where the transport and not the sensing of major constituents of the plant host is the central mechanism associated with virulence of the pathogen. Our results allow to draw a complete pathway from signal transport to phytotoxin production where each step of the cascade is controlled by CebR, the cellulose utilization regulator. We propose the high affinity of CebE to cellotriose as possible adaptation of S. scabies to colonize expanding plant tissue. Our work further highlights how genes associated with primary metabolism in nonpathogenic Streptomyces species have been recruited as basic elements of virulence in plant pathogenic species.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Oligossacarídeos/metabolismo , Streptomyces/patogenicidade , Adenosina Trifosfatases/metabolismo , Celobiose/metabolismo , Regulação Bacteriana da Expressão Gênica , Indóis/metabolismo , Filogenia , Piperazinas/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Transporte Proteico , Transdução de Sinais , Streptomyces/metabolismo
3.
Int J Syst Evol Microbiol ; 64(Pt 4): 1340-1350, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24436067

RESUMO

The genus Rhizorhapis gen. nov. (to replace the illegitimate genus name Rhizomonas) is proposed for strains of Gram-negative bacteria causing corky root of lettuce, a widespread and important lettuce disease worldwide. Only one species of the genus Rhizomonas was described, Rhizomonas suberifaciens, which was subsequently reclassified as Sphingomonas suberifaciens based on 16S rRNA gene sequences and the presence of sphingoglycolipid in the cell envelope. However, the genus Sphingomonas is so diverse that further reclassification was deemed necessary. Twenty new Rhizorhapis gen. nov.- and Sphingomonas-like isolates were obtained from lettuce or sow thistle roots, or from soil using lettuce seedlings as bait. These and previously reported isolates were characterized in a polyphasic study including 16S rRNA gene sequencing, DNA-DNA hybridization, DNA G+C content, whole-cell fatty acid composition, morphology, substrate oxidation, temperature and pH sensitivity, and pathogenicity to lettuce. The isolates causing lettuce corky root belonged to the genera Rhizorhapis gen. nov., Sphingobium, Sphingopyxis and Rhizorhabdus gen. nov. More specifically, we propose to reclassify Rhizomonas suberifaciens as Rhizorhapis suberifaciens gen. nov., comb. nov. (type strain, CA1(T) = LMG 17323(T) = ATCC 49355(T)), and also propose the novel species Sphingobium xanthum sp. nov., Sphingobium mellinum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. with the type strains NL9(T) ( = LMG 12560(T) = ATCC 51296(T)), WI4(T) ( = LMG 11032(T) = ATCC 51292(T)) and SP1(T) ( = LMG 12581(T) = ATCC 51289(T)), respectively. Several strains isolated from lettuce roots belonged to the genus Sphingomonas, but none of them were pathogenic.


Assuntos
Lactuca/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Rizosfera , Sphingomonadaceae/classificação , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação
4.
Mol Plant Microbe Interact ; 25(5): 637-47, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22482837

RESUMO

Rhodococcus fascians is currently the only phytopathogen of which the virulence genes occur on a linear plasmid. To get insight into the origin of this replicon and into the virulence strategy of this broad-spectrum phytopathogen, the sequence of the linear plasmid of strain D188, pFiD188, was determined. Analysis of the 198,917 bp revealed four syntenic regions with linear plasmids of R. erythropolis, R. jostii, and R. opacus, suggesting a common origin of these replicons. Mutational analysis of pFi_086 and pFi_102, similar to cutinases and type IV peptidases, respectively, showed that conserved region R2 was involved in plasmid dispersal and pointed toward a novel function for actinobacterial cutinases in conjugation. Additionally, pFiD188 had three regions that were unique for R. fascians. Functional analysis of the stk and nrp loci of regions U2 and U3, respectively, indicated that their role in symptom development was limited compared with that of the previously identified fas, att, and hyp virulence loci situated in region U1. Thus, pFiD188 is a typical rhodococcal linear plasmid with a composite structure that encodes core functions involved in plasmid maintenance and accessory functions, some possibly acquired through horizontal gene transfer, implicated in virulence and the interaction with the host.


Assuntos
Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Plasmídeos/genética , Rhodococcus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Conjugação Genética , Análise Mutacional de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Regulação da Expressão Gênica/genética , Genes Bacterianos/genética , Dados de Sequência Molecular , Óperon/genética , Folhas de Planta/microbiologia , Replicon/genética , Rhodococcus/enzimologia , Rhodococcus/patogenicidade , Rhodococcus/ultraestrutura , Alinhamento de Sequência , Análise de Sequência de DNA , Telômero , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA