Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(3): 1928-1940, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36701569

RESUMO

Although cyclin-dependent kinase 2 (CDK2) is a validated target for both cancer and contraception, developing a CDK2 inhibitor with exquisite selectivity has been challenging due to the structural similarity of the ATP-binding site, where most kinase inhibitors bind. We previously discovered an allosteric pocket in CDK2 with the potential to bind a selective compound and then discovered and structurally confirmed an anthranilic acid scaffold that binds this pocket with high affinity. These allosteric inhibitors are selective for CDK2 over structurally similar CDK1 and show contraceptive potential. Herein, we describe the screening and optimization that led to compounds like EF-4-177 with nanomolar affinity for CDK2. EF-4-177 is metabolically stable, orally bioavailable, and significantly disrupts spermatogenesis, demonstrating this series' therapeutic potential. This work details the discovery of the highest affinity allosteric CDK inhibitors reported and shows promise for this series to yield an efficacious and selective allosteric CDK2 inhibitor.


Assuntos
Anticoncepcionais Masculinos , Masculino , Humanos , Animais , Camundongos , Quinase 2 Dependente de Ciclina , Relação Estrutura-Atividade , Anticoncepcionais Masculinos/farmacologia , Contagem de Espermatozoides , Sêmen/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
2.
ChemMedChem ; 17(15): e202000499, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35644882

RESUMO

The cation channel of sperm (CatSper) is a validated target for nonhormonal male contraception, but it lacks selective blockers, hindering studies to establish its role in both motility and capacitation. Via an innovative calcium uptake assay utilizing human sperm we discovered novel inhibitors of CatSper function from a high-throughput screening campaign of 72,000 compounds. Preliminary SAR was established for seven hit series. HTS hits or their more potent analogs blocked potassium-induced depolarization and noncompetitively inhibited progesterone-induced CatSper activation. CatSper channel blockade was confirmed by patch clamp electrophysiology and these compounds inhibited progesterone- and prostaglandin E1-induced hyperactivated sperm motility. One of the hit compounds is a potent CatSper inhibitor with high selectivity for CatSper over hCav1.2, hNav1.5, moderate selectivity over hSlo3 and hERG, and low cytotoxicity and is therefore the most promising inhibitor identified in this study. These new CatSper blockers serve as useful starting points for chemical probe development and drug discovery efforts.


Assuntos
Canais de Cálcio , Motilidade dos Espermatozoides , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Masculino , Progesterona/metabolismo , Progesterona/farmacologia , Sêmen/metabolismo , Espermatozoides/metabolismo
3.
Open Biol ; 9(8): 190117, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31409229

RESUMO

Minichromosome maintenance protein 10 (Mcm10) is essential for DNA unwinding by the replisome during S phase. It is emerging as a promising anti-cancer target as MCM10 expression correlates with tumour progression and poor clinical outcomes. Here we used a competition-based fluorescence polarization (FP) high-throughput screening (HTS) strategy to identify compounds that inhibit Mcm10 from binding to DNA. Of the five active compounds identified, only the anti-parasitic agent suramin exhibited a dose-dependent decrease in replication products in an in vitro replication assay. Structure-activity relationship evaluation identified several suramin analogues that inhibited ssDNA binding by the human Mcm10 internal domain and full-length Xenopus Mcm10, including analogues that are selective for Mcm10 over human RPA. Binding of suramin analogues to Mcm10 was confirmed by surface plasmon resonance (SPR). SPR and FP affinity determinations were highly correlated, with a similar rank between affinity and potency for killing colon cancer cells. Suramin analogue NF157 had the highest human Mcm10 binding affinity (FP Ki 170 nM, SPR KD 460 nM) and cell activity (IC50 38 µM). Suramin and its analogues are the first identified inhibitors of Mcm10 and probably block DNA binding by mimicking the DNA sugar phosphate backbone due to their extended, polysulfated anionic structures.


Assuntos
Inibidores Enzimáticos/farmacologia , Proteínas de Manutenção de Minicromossomo/antagonistas & inibidores , Suramina/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cinética , Proteínas de Manutenção de Minicromossomo/genética , Estrutura Molecular , Ligação Proteica , Suramina/análogos & derivados , Suramina/química , Xenopus
4.
J Med Chem ; 56(10): 3768-82, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23600925

RESUMO

Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that act as key regulatory elements in cell cycle progression. We describe the development of highly potent diaminothiazole inhibitors of CDK2 (IC50 = 0.0009-0.0015 µM) from a single hit compound with weak inhibitory activity (IC50 = 15 µM), discovered by high-throughput screening. Structure-based design was performed using 35 cocrystal structures of CDK2 liganded with distinct analogues of the parent compound. The profiling of compound 51 against a panel of 339 kinases revealed high selectivity for CDKs, with preference for CDK2 and CDK5 over CDK9, CDK1, CDK4, and CDK6. Compound 51 inhibited the proliferation of 13 out of 15 cancer cell lines with IC50 values between 0.27 and 6.9 µM, which correlated with the complete suppression of retinoblastoma phosphorylation and the onset of apoptosis. Combined, the results demonstrate the potential of this new inhibitors series for further development into CDK-specific chemical probes or therapeutics.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Tiazóis/síntese química , Tiazóis/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corantes , Simulação por Computador , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Ensaios de Triagem em Larga Escala , Humanos , Indicadores e Reagentes , Masculino , Modelos Moleculares , Fosforilação , Relação Estrutura-Atividade , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/patologia , Sais de Tetrazólio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA