Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445563

RESUMO

Choroid plexus (CP) sequesters cadmium and other metals, protecting the brain from these neurotoxins. These metals can induce cellular stress and modulate homeostatic functions of CP, such as solute transport. We previously showed in primary cultured neonatal rat CP epithelial cells (CPECs) that cadmium induced cellular stress and stimulated choline uptake at the apical membrane, which interfaces with cerebrospinal fluid in situ. Here, in CPECs, we characterized the roles of glutathione (GSH) and Zinc supplementation in the adaptive stress response to cadmium. Cadmium increased GSH and decreased the reduced GSH-to-oxidized GSH (GSSG) ratio. Heat shock protein-70 (Hsp70), heme oxygenase (HO-1), and metallothionein (Mt-1) were induced along with the catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis. Inhibition of GCL by l-buthionine sulfoximine (BSO) enhanced stress protein induction and stimulation of choline uptake by cadmium. Zinc alone did not induce Hsp70, HO-1, or GCL subunits, or modulate choline uptake. Zinc supplementation during cadmium exposure attenuated stress protein induction and stimulation of choline uptake; this effect persisted despite inhibition of GSH synthesis. These data indicated up-regulation of GSH synthesis promotes adaptation to cadmium-induced cellular stress in CP, but Zinc may confer cytoprotection independent of GSH.


Assuntos
Cádmio/toxicidade , Colina/metabolismo , Plexo Corióideo/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Glutationa/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Zinco/administração & dosagem , Animais , Animais Recém-Nascidos , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Suplementos Nutricionais , Epitélio/metabolismo , Epitélio/patologia , Ratos , Ratos Sprague-Dawley
2.
Sci Rep ; 10(1): 18801, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139790

RESUMO

Myocardial infarction (MI) can result in sympathetic nerve loss in the infarct region. However, the contribution of hypo-innervation to electrophysiological remodeling, independent from MI-induced ischemia and fibrosis, has not been comprehensively investigated. We present a novel mouse model of regional cardiac sympathetic hypo-innervation utilizing a targeted-toxin (dopamine beta-hydroxylase antibody conjugated to saporin, DBH-Sap), and measure resulting electrophysiological and Ca2+ handling dynamics. Five days post-surgery, sympathetic nerve density was reduced in the anterior left ventricular epicardium of DBH-Sap hearts compared to control. In Langendorff-perfused hearts, there were no differences in mean action potential duration (APD80) between groups; however, isoproterenol (ISO) significantly shortened APD80 in DBH-Sap but not control hearts, resulting in a significant increase in APD80 dispersion in the DBH-Sap group. ISO also produced spontaneous diastolic Ca2+ elevation in DBH-Sap but not control hearts. In innervated hearts, sympathetic nerve stimulation (SNS) increased heart rate to a lesser degree in DBH-Sap hearts compared to control. Additionally, SNS produced APD80 prolongation in the apex of control but not DBH-Sap hearts. These results suggest that hypo-innervated hearts have regional super-sensitivity to circulating adrenergic stimulation (ISO), while having blunted responses to SNS, providing important insight into the mechanisms of arrhythmogenesis following sympathetic nerve loss.


Assuntos
Eletrofisiologia Cardíaca , Coração/inervação , Receptores Adrenérgicos beta/fisiologia , Sistema Nervoso Simpático/patologia , Sistema Nervoso Simpático/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 318(3): H558-H565, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975627

RESUMO

Cardiac sympathetic nerves undergo cholinergic transdifferentiation following reperfused myocardial infarction (MI), whereby the sympathetic nerves release both norepinephrine (NE) and acetylcholine (ACh). The functional electrophysiological consequences of post-MI transdifferentiation have never been explored. We performed MI or sham surgery in wild-type (WT) mice and mice in which choline acetyltransferase was deleted from adult noradrenergic neurons [knockout (KO)]. Electrophysiological activity was assessed with optical mapping of action potentials (AP) and intracellular Ca2+ transients (CaT) in innervated Langendorff-perfused hearts. KO MI hearts had similar NE content but reduced ACh content compared with WT MI hearts (0.360 ± 0.074 vs. 0.493 ± 0.087 pmol/mg; KO, n = 6; WT, n = 4; P < 0.05). KO MI hearts also had higher basal ex vivo heart rates versus WT MI hearts (328.5 ± 35.3 vs. 247.4 ± 62.4 beats/min; KO, n = 8; WT, n = 6; P < 0.05). AP duration at 80% repolarization was significantly shorter in the remote and border zones of KO MI versus WT MI hearts, whereas AP durations (APDs) were similar in infarct regions. This APD heterogeneity resulted in increased APD dispersion in the KO MI versus WT MI hearts (11.9 ± 2.7 vs. 8.2 ± 2.3 ms; KO, n = 8; WT, n = 6; P < 0.05), which was eliminated with atropine. CaT duration at 80% and CaT alternans magnitude were similar between groups both with and without sympathetic nerve stimulation. These results indicate that cholinergic transdifferentiation following MI prolongs APD in the remote and border zone and reduces APD heterogeneity.NEW & NOTEWORTHY Cardiac sympathetic neurons undergo cholinergic transdifferentiation following myocardial infarction; however, the electrophysiological effects of corelease of norepinephrine and acetylcholine (ACh) have never been assessed. Using a mouse model in which choline acetyltransferase was deleted from adult noradrenergic neurons and optical mapping of innervated hearts, we found that corelease of ACh reduces dispersion of action potential duration, which may be antiarrhythmic.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Transdiferenciação Celular/fisiologia , Neurônios Colinérgicos/metabolismo , Infarto do Miocárdio/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Neurônios Adrenérgicos/metabolismo , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Coração/inervação , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo
4.
Bioorg Med Chem Lett ; 29(8): 1023-1029, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30773430

RESUMO

Fascin is an actin binding and bundling protein that is not expressed in normal epithelial tissues but overexpressed in a variety of invasive epithelial tumors. It has a critical role in cancer cell metastasis by promoting cell migration and invasion. Here we report the crystal structures of fascin in complex with a series of novel and potent inhibitors. Structure-based elaboration of these compounds enabled the development of a series with nanomolar affinities for fascin, good physicochemical properties and the ability to inhibit fascin-mediated bundling of filamentous actin. These compounds provide promising starting points for fascin-targeted anti-metastatic therapies.


Assuntos
Antineoplásicos/síntese química , Proteínas de Transporte/antagonistas & inibidores , Desenho de Fármacos , Proteínas dos Microfilamentos/antagonistas & inibidores , Pirazóis/química , Piridinas/química , Quinolonas/química , Antineoplásicos/metabolismo , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Humanos , Concentração Inibidora 50 , Proteínas dos Microfilamentos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Pirazóis/metabolismo , Piridinas/metabolismo , Quinolonas/metabolismo , Relação Estrutura-Atividade
5.
Am J Physiol Heart Circ Physiol ; 314(3): H415-H423, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101167

RESUMO

Cardiac sympathetic nerves stimulate heart rate and force of contraction. Myocardial infarction (MI) leads to the loss of sympathetic nerves within the heart, and clinical studies have indicated that sympathetic denervation is a risk factor for arrhythmias and cardiac arrest. Two distinct types of denervation have been identified in the mouse heart after MI caused by ischemia-reperfusion: transient denervation of peri-infarct myocardium and sustained denervation of the infarct. Sustained denervation is linked to increased arrhythmia risk, but it is not known whether acute nerve loss in peri-infarct myocardium also contributes to arrhythmia risk. Peri-infarct sympathetic denervation requires the p75 neurotrophin receptor (p75NTR), but removal of p75NTR alters the pattern of sympathetic innervation in the heart and increases spontaneous arrhythmias. Therefore, we targeted the p75NTR coreceptor sortilin and the p75NTR-induced protease tumor necrosis factor-α-converting enzyme/A disintegrin and metalloproteinase domain 17 (TACE/ADAM17) to selectively block peri-infarct denervation. Sympathetic nerve density was quantified using immunohistochemistry for tyrosine hydroxylase. Genetic deletion of sortilin had no effect on the timing or extent of axon degeneration, but inhibition of TACE/ADAM17 with the protease inhibitor marimastat prevented the loss of axons from viable myocardium. We then asked whether retention of nerves in peri-infarct myocardium had an impact on cardiac electrophysiology 3 days after MI using ex vivo optical mapping of transmembrane potential and intracellular Ca2+. Preventing acute denervation of viable myocardium after MI did not significantly alter cardiac electrophysiology or Ca2+ handling, suggesting that transient denervation at this early time point has minimal impact on arrhythmia risk. NEW & NOTEWORTHY Sympathetic denervation after myocardial infarction is a risk factor for arrhythmias. We asked whether transient loss of nerves in viable myocardium contributed to arrhythmia risk. We found that targeting protease activity could prevent acute peri-infarct denervation but that it did not significantly alter cardiac electrophysiology or Ca2+ handling 3 days after myocardial infarction.


Assuntos
Arritmias Cardíacas/etiologia , Coração/inervação , Infarto do Miocárdio/complicações , Miocárdio/patologia , Sistema Nervoso Simpático/fisiopatologia , Proteína ADAM17/metabolismo , Potenciais de Ação , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Frequência Cardíaca , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo , Sobrevivência de Tecidos
6.
Eur Heart J ; 38(18): 1402-1412, 2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-26873092

RESUMO

AIMS: Circular RNAs are a subclass of non-coding RNAs detected within mammalian cells. This study was designed to test the roles of a circular RNA circ-Foxo3 in senescence using in vitro and in vivo approaches. METHODS AND RESULTS: Using the approaches of molecular and cellular biology, we show that a circular RNA generated from a member of the forkhead family of transcription factors, Foxo3, namely circ-Foxo3, was highly expressed in heart samples of aged patients and mice, which was correlated with markers of cellular senescence. Doxorubicin-induced cardiomyopathy was aggravated by ectopic expression of circ-Foxo3 but was relieved by silencing endogenous circ-Foxo3. We also found that silencing circ-Foxo3 inhibited senescence of mouse embryonic fibroblasts and that ectopic expression of circ-Foxo3 induced senescence. We found that circ-Foxo3 was mainly distributed in the cytoplasm, where it interacted with the anti-senescent protein ID-1 and the transcription factor E2F1, as well as the anti-stress proteins FAK and HIF1α. CONCLUSION: We conclude that ID-1, E2F1, FAK, and HIF1α interact with circ-Foxo3 and are retained in the cytoplasm and could no longer exert their anti-senescent and anti-stress roles, resulting in increased cellular senescence.


Assuntos
Senescência Celular/fisiologia , Proteína Forkhead Box O3/fisiologia , RNA/fisiologia , Idoso , Animais , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Doxorrubicina/toxicidade , Fator de Transcrição E2F1/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Camundongos , Transporte Proteico , RNA Circular , Estresse Fisiológico/fisiologia
7.
J Mol Cell Cardiol ; 91: 114-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26739214

RESUMO

Optimal healing of damaged tissue following myocardial infarction (MI) requires a coordinated cellular response that can be divided into three phases: inflammatory, proliferative/reparative, and maturation. The inflammatory phase, characterized by rapid influx of cytokines, chemokines, and immune cells, is critical to the removal of damaged tissue. The onset of the proliferative/reparative phase is marked by increased proliferation of myofibroblasts and secretion of collagen to replace dead tissue. Lastly, crosslinking of collagen fibers and apoptosis of immune cells marks the maturation phase. Excessive inflammation or fibrosis has been linked to increased incidence of arrhythmia and other MI-related pathologies. This review describes the roles of inflammation and fibrosis in arrhythmogenesis and prospective therapies for anti-arrhythmic treatment.


Assuntos
Arritmias Cardíacas/genética , Regulação da Expressão Gênica , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Transdução de Sinais , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Fibrose , Humanos , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transporte de Íons , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA