Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 159: 241-248, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838170

RESUMO

AIM: To identify the effect of single nucleotide polymorphism (SNP) interactions on the risk of toxicity following radiotherapy (RT) for prostate cancer (PCa) and propose a new method for polygenic risk score incorporating SNP-SNP interactions (PRSi). MATERIALS AND METHODS: Analysis included the REQUITE PCa cohort that received external beam RT and was followed for 2 years. Late toxicity endpoints were: rectal bleeding, urinary frequency, haematuria, nocturia, decreased urinary stream. Among 43 literature-identified SNPs, the 30% most strongly associated with each toxicity were tested. SNP-SNP combinations (named SNP-allele sets) seen in ≥10% of the cohort were condensed into risk (RS) and protection (PS) scores, respectively indicating increased or decreased toxicity risk. Performance of RS and PS was evaluated by logistic regression. RS and PS were then combined into a single PRSi evaluated by area under the receiver operating characteristic curve (AUC). RESULTS: Among 1,387 analysed patients, toxicity rates were 11.7% (rectal bleeding), 4.0% (urinary frequency), 5.5% (haematuria), 7.8% (nocturia) and 17.1% (decreased urinary stream). RS and PS combined 8 to 15 different SNP-allele sets, depending on the toxicity endpoint. Distributions of PRSi differed significantly in patients with/without toxicity with AUCs ranging from 0.61 to 0.78. PRSi was better than the classical summed PRS, particularly for the urinary frequency, haematuria and decreased urinary stream endpoints. CONCLUSIONS: Our method incorporates SNP-SNP interactions when calculating PRS for radiotherapy toxicity. Our approach is better than classical summation in discriminating patients with toxicity and should enable incorporating genetic information to improve normal tissue complication probability models.


Assuntos
Neoplasias da Próstata , Lesões por Radiação , Área Sob a Curva , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Lesões por Radiação/genética , Fatores de Risco
2.
Front Oncol ; 10: 541281, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178576

RESUMO

Background: REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk factors. Methods: The study involved REQUITE prostate cancer patients treated with external beam radiotherapy who had complete 2-year follow-up. We used five separate late toxicity endpoints: ≥grade 1 late rectal bleeding, ≥grade 2 urinary frequency, ≥grade 1 haematuria, ≥ grade 2 nocturia, ≥ grade 1 decreased urinary stream. Forty-three single nucleotide polymorphisms (SNPs) already reported in the literature to be associated with the toxicity endpoints were included in the analysis. No SNP had been studied before in the REQUITE cohort. Deep Sparse AutoEncoders (DSAE) were trained to recognize features (SNPs) identifying patients with no toxicity and tested on a different independent mixed population including patients without and with toxicity. Results: One thousand, four hundred and one patients were included, and toxicity rates were: rectal bleeding 11.7%, urinary frequency 4%, haematuria 5.5%, nocturia 7.8%, decreased urinary stream 17.1%. Twenty-four of the 43 SNPs that were associated with the toxicity endpoints were validated as identifying patients with toxicity. Twenty of the 24 SNPs were associated with the same toxicity endpoint as reported in the literature: 9 SNPs for urinary symptoms and 11 SNPs for overall toxicity. The other 4 SNPs were associated with a different endpoint. Conclusion: Deep learning algorithms can validate SNPs associated with toxicity after radiotherapy for prostate cancer. The method should be studied further to identify polygenic SNP risk signatures for radiotherapy toxicity. The signatures could then be included in integrated normal tissue complication probability models and tested for their ability to personalize radiotherapy treatment planning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA