Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 190: 112090, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32018096

RESUMO

New multi-target indole and naphthalene derivatives containing the oxadiazolone scaffold as a bioisostere of the melatonin acetamido group have been developed. The novel compounds were characterized at melatonin receptors MT1R and MT2R, quinone reductase 2 (QR2), lipoxygenase-5 (LOX-5), and monoamine oxidases (MAO-A and MAO-B), and also as radical scavengers. We found that selectivity within the oxadiazolone series can be modulated by modifying the side chain functionality and co-planarity with the indole or naphthalene ring. In phenotypic assays, several oxadiazolone-based derivatives induced signalling mediated by the transcription factor NRF2 and promoted the maturation of neural stem-cells into a neuronal phenotype. Activation of NRF2 could be due to the binding of indole derivatives to KEAP1, as deduced from surface plasmon resonance (SPR) experiments. Molecular modelling studies using the crystal structures of QR2 and the KEAP1 Kelch-domain, as well as the recently described X-ray free-electron laser (XFEL) structures of chimeric MT1R and MT2R, provided a rationale for the experimental data and afforded valuable insights for future drug design endeavours.


Assuntos
Fator 2 Relacionado a NF-E2/agonistas , Neurogênese/efeitos dos fármacos , Oxidiazóis/farmacologia , Quinona Redutases/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Humanos , Indóis/síntese química , Indóis/metabolismo , Indóis/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Naftalenos/síntese química , Naftalenos/metabolismo , Naftalenos/farmacologia , Oxidiazóis/síntese química , Oxidiazóis/metabolismo , Ligação Proteica
2.
J Comput Aided Mol Des ; 28(11): 1093-107, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25129484

RESUMO

Coarse grained (CG) modeling has been applied to study the influence of the Trastuzumab monoclonal antibody on the structure and dynamics of the full ErbB2 receptor dimer, including the lipid bilayer. The usage of CG models to study such complexes is almost mandatory, at present, due to the large size of the whole system. We will show that the Martini model performs satisfactorily well, giving results well-matched with those obtained by atomistic models as well as with the experimental information existing on homolog receptors. For example, the extra and intracellular domains approach the bilayer surface in both the monomer and dimer cases. The Trastuzumab-Fab hinders the interaction of the receptors with the lipid bilayer. Another interesting effect of the antibody is the disruption of the antiparallel arrangement of the juxtamembrane segments in the dimer case. These findings might help to understand the effect of the antibody on the receptor bioactivity.


Assuntos
Anticorpos Monoclonais Humanizados/química , Receptor ErbB-2/química , Termodinâmica , Simulação por Computador , Dimerização , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Receptor ErbB-2/efeitos dos fármacos , Trastuzumab
3.
J Mol Model ; 19(2): 931-41, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23090500

RESUMO

Epidermal growth factor receptors (EGFR) are associated with a number of biological processes and are becoming increasingly recognized as important therapeutic targets against cancer. In this work, we provide models based on homology for the extracellular domains (ECD) of ErbB3 and ErbB4 in their active conformations, including a Heregulin ligand, followed by further refinement of the models by molecular dynamics simulations at atomistic scale. We compare the results with a model built for ErbB2 based on crystallographic information and analyze the common features observed among members of the family, namely, the periscope movement of the dimerization arm and the hinge displacement of domain IV. Finally, we refine a model for the interaction of the ECDs corresponding to a ErbB2-ErbB3 heterodimer, which is widely recognized to have a high impact in cancer development.


Assuntos
Receptores ErbB/química , Simulação de Dinâmica Molecular , Neuregulina-1/química , Receptor ErbB-2/química , Receptor ErbB-3/química , Humanos , Ligantes , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Receptor ErbB-4 , Homologia Estrutural de Proteína , Água/química
4.
J Mol Model ; 19(3): 1227-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23160933

RESUMO

Human epidermal growth factor receptor 2 (ErbB2) is a transmembrane oncoprotein that is over expressed in breast cancer. A successful therapeutic treatment is a monoclonal antibody called trastuzumab which interacts with the ErbB2 extracellular domain (ErbB2-ECD). A better understanding of the detailed structure of the receptor-antibody interaction is indeed of prime interest for the design of more effective anticancer therapies. In order to discuss the flexibility of the complex ErbB2-ECD/trastuzumab, we present, in this study, a multi-nanosecond molecular dynamics simulation (MD) together with an analysis of fluctuations, through a principal component analysis (PCA) of this system. Previous to this step and in order to validate the simulations, we have performed a detailed analysis of the variable antibody domain interactions with the extracellular domain IV of ErbB2. This structure has been statically elucidated by x-ray studies. Indeed, the simulation results are in excellent agreement with the available experimental information during the full trajectory. The PCA shows eigenvector fluctuations resulting in a hinge motion in which domain II and C(H) domains approach each other. This move is likely stabilized by the formation of H-bonds and salt bridge interactions between residues of the dimerization arm in the domain II and trastuzumab residues located in the C(H) domain. Finally, we discuss the flexibility of the MD/PCA model in relation with the static x-ray structure. A movement of the antibody toward the dimerization domain of the ErbB2 receptor is reported for the first time. This finding could have important consequences on the biological action of the monoclonal antibody.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Antineoplásicos/metabolismo , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/imunologia , Antineoplásicos/imunologia , Sítios de Ligação , Neoplasias da Mama/metabolismo , Feminino , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptor ErbB-2/imunologia , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA