Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3802, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714719

RESUMO

The interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development. Here, we present the cryo-EM structure of the NCOA4-FTH1 interface, resolving 16 amino acids of NCOA4 that are crucial for the interaction. The characterization of mutants, designed to modulate the NCOA4-FTH1 interaction, is used to validate the significance of the different features of the binding site. Our results explain the role of the large solvent-exposed hydrophobic patch found on the surface of FTH1 and pave the way for the rational development of ferritinophagy modulators.


Assuntos
Microscopia Crioeletrônica , Ferritinas , Coativadores de Receptor Nuclear , Ferritinas/metabolismo , Ferritinas/química , Ferritinas/genética , Humanos , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/genética , Ligação Proteica , Sítios de Ligação , Ferro/metabolismo , Autofagia , Modelos Moleculares , Células HEK293 , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/genética , Proteólise , Mutação
2.
Sci Adv ; 10(6): eadi1367, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324691

RESUMO

Several kinesin-5 motors (kinesin-5s) exhibit bidirectional motility. The mechanism of such motility remains unknown. Bidirectional kinesin-5s share a long N-terminal nonmotor domain (NTnmd), absent in exclusively plus-end-directed kinesins. Here, we combined in vivo, in vitro, and cryo-electron microscopy (cryo-EM) studies to examine the impact of NTnmd mutations on the motor functions of the bidirectional kinesin-5, Cin8. We found that NTnmd deletion mutants exhibited cell viability and spindle localization defects. Using cryo-EM, we examined the structure of a microtubule (MT)-bound motor domain of Cin8, containing part of its NTnmd. Modeling and molecular dynamic simulations based on the cryo-EM map suggested that the NTnmd of Cin8 interacts with the C-terminal tail of ß-tubulin. In vitro experiments on subtilisin-treated MTs confirmed this notion. Last, we showed that NTnmd mutants are defective in plus-end-directed motility in single-molecule and antiparallel MT sliding assays. These findings demonstrate that the NTnmd, common to bidirectional kinesin-5s, is critical for their bidirectional motility and intracellular functions.


Assuntos
Cinesinas , Proteínas de Saccharomyces cerevisiae , Cinesinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , Microtúbulos/química
3.
J Am Chem Soc ; 142(46): 19551-19557, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166133

RESUMO

Biomineralization is mediated by specialized proteins that guide and control mineral sedimentation. In many cases, the active regions of these biomineralization proteins are intrinsically disordered. High-resolution structures of these proteins while they interact with minerals are essential for understanding biomineralization processes and the function of intrinsically disordered proteins (IDPs). Here we used the cavity of ferritin as a nanoreactor where the interaction between M6A, an intrinsically disordered iron-binding domain, and an iron oxide particle was visualized at high resolution by cryo-EM. Taking advantage of the differences in the electron-dose sensitivity of the protein and the iron oxide particles, we developed a method to determine the irregular shape of the particles found in our density maps. We found that the folding of M6A correlates with the detection of mineral particles in its vicinity. M6A interacts with the iron oxide particles through its C-terminal side, resulting in the stabilization of a helix at its N-terminal side. The stabilization of the helix at a region that is not in direct contact with the iron oxide particle demonstrates the ability of IDPs to respond to signals from their surroundings by conformational changes. These findings provide the first glimpse toward the long-suspected mechanism for biomineralization protein control over mineral microstructure, where unstructured regions of these proteins become more ordered in response to their interaction with the nascent mineral particles.


Assuntos
Apoferritinas/química , Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Compostos Férricos/química , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Sítios de Ligação , Biomineralização , Nanopartículas Magnéticas de Óxido de Ferro/química , Magnetospirillum/química , Modelos Moleculares , Tamanho da Partícula , Ligação Proteica , Conformação Proteica , Dobramento de Proteína
4.
Nanoscale ; 11(21): 10160-10166, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30994643

RESUMO

Here we show the encapsulation of 35 nm diameter, nearly-spherical, DNA origami by self-assembly of SV40-like (simian virus 40) particles. The self-assembly of this new type of nanoparticles is highly reproducible and efficient. The structure of these particles was determined by cryo-EM. The capsid forms a regular SV40 lattice of T = 7d icosahedral symmetry and the structural features of encapsulated DNA origami are fully visible. These particles are a promising biomaterial for use in various medical applications.


Assuntos
Capsídeo/química , DNA/química , Nanopartículas/química , Vírus 40 dos Símios/química , Capsídeo/ultraestrutura , DNA/ultraestrutura , Nanopartículas/ultraestrutura , Vírus 40 dos Símios/ultraestrutura
5.
Elife ; 52016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253059

RESUMO

Restriction factors and pattern recognition receptors are important components of intrinsic cellular defenses against viral infection. Mammalian TRIM5α proteins are restriction factors and receptors that target the capsid cores of retroviruses and activate ubiquitin-dependent antiviral responses upon capsid recognition. Here, we report crystallographic and functional studies of the TRIM5α B-box 2 domain, which mediates higher-order assembly of TRIM5 proteins. The B-box can form both dimers and trimers, and the trimers can link multiple TRIM5α proteins into a hexagonal net that matches the lattice arrangement of capsid subunits and enables avid capsid binding. Two modes of conformational flexibility allow TRIM5α to accommodate the variable curvature of retroviral capsids. B-box mediated interactions also modulate TRIM5α's E3 ubiquitin ligase activity, by stereochemically restricting how the N-terminal RING domain can dimerize. Overall, these studies define important molecular details of cellular recognition of retroviruses, and how recognition links to downstream processes to disable the virus.


Assuntos
Capsídeo/metabolismo , Proteínas de Transporte/metabolismo , Retroviridae/metabolismo , Animais , Capsídeo/química , Proteínas de Transporte/química , Cristalografia por Raios X , Macaca mulatta , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Ubiquitina/metabolismo , Ubiquitinação
6.
Mol Pharmacol ; 90(1): 35-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27190212

RESUMO

The multidrug transporter P-glycoprotein (P-gp, ABCB1) is an ATP-dependent pump that mediates the efflux of structurally diverse drugs and xenobiotics across cell membranes, affecting drug pharmacokinetics and contributing to the development of multidrug resistance. Structural information about the conformational changes in human P-gp during the ATP hydrolysis cycle has not been directly demonstrated, although mechanistic information has been inferred from biochemical and biophysical studies conducted with P-gp and its orthologs, or from structures of other ATP-binding cassette transporters. Using single-particle cryo-electron microscopy, we report the surprising discovery that, in the absence of the transport substrate and nucleotides, human P-gp can exist in both open [nucleotide binding domains (NBDs) apart; inward-facing] and closed (NBDs close; outward-facing) conformations. We also probe conformational states of human P-gp during the catalytic cycle, and demonstrate that, following ATP hydrolysis, P-gp transitions through a complete closed conformation to a complete open conformation in the presence of ADP.


Assuntos
Biocatálise , Microscopia Crioeletrônica , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/ultraestrutura , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Humanos , Hidrólise , Modelos Biológicos , Conformação Proteica
7.
J Struct Biol ; 181(2): 116-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23110852

RESUMO

The limitation of using low electron doses in non-destructive cryo-electron tomography of biological specimens can be partially offset via averaging of aligned and structurally homogeneous subsets present in tomograms. This type of sub-volume averaging is especially challenging when multiple species are present. Here, we tackle the problem of conformational separation and alignment with a "collaborative" approach designed to reduce the effect of the "curse of dimensionality" encountered in standard pair-wise comparisons. Our new approach is based on using the nuclear norm as a collaborative similarity measure for alignment of sub-volumes, and by exploiting the presence of symmetry early in the processing. We provide a strict validation of this method by analyzing mixtures of intact simian immunodeficiency viruses SIV mac239 and SIV CP-MAC. Electron microscopic images of these two virus preparations are indistinguishable except for subtle differences in conformation of the envelope glycoproteins displayed on the surface of each virus particle. By using the nuclear norm-based, collaborative alignment method presented here, we demonstrate that the genetic identity of each virus particle present in the mixture can be assigned based solely on the structural information derived from single envelope glycoproteins displayed on the virus surface.


Assuntos
Algoritmos , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Conformação Proteica , Vírus da Imunodeficiência Símia/ultraestrutura , Proteínas do Envelope Viral/ultraestrutura
8.
PLoS Pathog ; 8(7): e1002797, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22807678

RESUMO

HIV-1 infection begins with the binding of trimeric viral envelope glycoproteins (Env) to CD4 and a co-receptor on target T-cells. Understanding how these ligands influence the structure of Env is of fundamental interest for HIV vaccine development. Using cryo-electron microscopy, we describe the contrasting structural outcomes of trimeric Env binding to soluble CD4, to the broadly neutralizing, CD4-binding site antibodies VRC01, VRC03 and b12, or to the monoclonal antibody 17b, a co-receptor mimic. Binding of trimeric HIV-1 BaL Env to either soluble CD4 or 17b alone, is sufficient to trigger formation of the open quaternary conformation of Env. In contrast, VRC01 locks Env in the closed state, while b12 binding requires a partial opening in the quaternary structure of trimeric Env. Our results show that, despite general similarities in regions of the HIV-1 gp120 polypeptide that contact CD4, VRC01, VRC03 and b12, there are important differences in quaternary structures of the complexes these ligands form on native trimeric Env, and potentially explain differences in the neutralizing breadth and potency of antibodies with similar specificities. From cryo-electron microscopic analysis at ∼9 Å resolution of a cleaved, soluble version of trimeric Env, we show that a structural signature of the open Env conformation is a three-helix motif composed of α-helical segments derived from highly conserved, non-glycosylated N-terminal regions of the gp41 trimer. The three N-terminal gp41 helices in this novel, activated Env conformation are held apart by their interactions with the rest of Env, and are less compactly packed than in the post-fusion, six-helix bundle state. These findings suggest a new structural template for designing immunogens that can elicit antibodies targeting HIV at a vulnerable, pre-entry stage.


Assuntos
Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Receptores de HIV/metabolismo , Anticorpos Monoclonais/metabolismo , Sítios de Ligação , Sítios de Ligação de Anticorpos , Antígenos CD4/metabolismo , Microscopia Crioeletrônica , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/ultraestrutura , Ligantes , Modelos Moleculares , Mimetismo Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(14): 6270-4, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308583

RESUMO

The molecular chaperone GroEL exists in at least two allosteric states, T and R, that interconvert in an ATP-controlled manner. Thermodynamic analysis suggests that the T-state population becomes negligible with increasing ATP concentrations, in conflict with the requirement for conformational cycling, which is essential for the operation of molecular machines. To solve this conundrum, we performed fluorescence correlation spectroscopy on the single-ring version of GroEL, using a fluorescent switch recently built into its structure, which turns "on," i.e., increases its fluorescence dramatically, when ATP is added. A series of correlation functions was measured as a function of ATP concentration and analyzed using singular-value decomposition. The analysis assigned the signal to two states whose dynamics clearly differ. Surprisingly, even at ATP saturation, approximately 50% of the molecules still populate the T state at any instance of time, indicating constant out-of-equilibrium cycling between T and R. Only upon addition of the cochaperonin GroES does the T-state population vanish. Our results suggest a model in which the T/R ratio is controlled by the rate of ADP release after hydrolysis, which can be determined accordingly.


Assuntos
Trifosfato de Adenosina/química , Chaperonina 60/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Chaperonina 60/metabolismo , Dinâmica não Linear , Conformação Proteica , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA