Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 40(36): 10892-900, 2001 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-11535066

RESUMO

Caveolae are 50-100 nm plasma membrane invaginations, which function in cell signaling and transcytosis, as well as in regulating cellular cholesterol homeostasis. These subcompartments of the plasma membrane are characterized by the presence of caveolin proteins. Recent studies have indicated that caveolae may be involved in the regulation of cellular cholesterol efflux to HDL, as well as selective uptake mediated by SR-BI. In the present study, we have determined the effect of caveolin-1 overexpression in mouse liver on plasma lipoprotein metabolism. We evaluated this effect using an adenovirus-mediated gene delivery system. C57BL/6J mice were injected with adenoviruses encoding either caveolin-1 (Adcav-1) or green fluorescent protein (AdGFP) together with a transactivator adenovirus (AdtTA). We found that, after adenovirus injection, caveolin-1 was overexpressed in hepatocytes. Moreover, the recombinant protein was localized to the plasma membrane. We also found that caveolin-1 overexpression induced a marked change in the lipoprotein profile of injected animals. In caveolin-1 overexpressing animals, plasma HDL-cholesterol levels were found to be approximately 2-fold elevated, as compared with control animals. To determine the effect of caveolin-1 on SR-BI-mediated selective uptake, we infected murine hepatocytes in culture with an adenoviral vector carrying the caveolin-1 cDNA or GFP as a control protein. We show that, in primary cultures of hepatocytes, caveolin-1 inhibits DiI-HDL uptake mediated by SR-BI. This result would mechanistically explain the increased plasma HDL-cholesterol levels we observed in caveolin-1 adenovirus-injected animals. In addition, caveolin-1 expression increased the secretion of apolipoprotein A-I in cultured hepatocytes and increased apolipoprotein A-I plasma levels in mice. Our study therefore demonstrates an important role for caveolin-1 in regulating HDL metabolism.


Assuntos
Caveolinas/metabolismo , Hepatócitos/metabolismo , Lipoproteínas HDL/sangue , Fígado/metabolismo , Adenoviridae , Animais , Apolipoproteínas/sangue , Caveolina 1 , Caveolinas/genética , Células Cultivadas , Feminino , Técnicas de Transferência de Genes , Genes Reporter , Proteínas de Fluorescência Verde , Lipoproteínas HDL/metabolismo , Fígado/citologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/metabolismo , Transfecção
2.
Mol Biol Cell ; 12(8): 2229-44, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11514613

RESUMO

Caveolin-1 is a principal component of caveolae membranes in vivo. Caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). However, it remains unknown whether caveolin-1 plays any role in regulating cell cycle progression. Here, we directly demonstrate that caveolin-1 expression arrests cells in the G(0)/G(1) phase of the cell cycle. We show that serum starvation induces up-regulation of endogenous caveolin-1 and arrests cells in the G(0)/G(1) phase of the cell cycle. Moreover, targeted down-regulation of caveolin-1 induces cells to exit the G(0)/G(1) phase. Next, we constructed a green fluorescent protein-tagged caveolin-1 (Cav-1-GFP) to examine the effect of caveolin-1 expression on cell cycle regulation. We directly demonstrate that recombinant expression of Cav-1-GFP induces arrest in the G(0)/G(1) phase of the cell cycle. To examine whether caveolin-1 expression is important for modulating cell cycle progression in vivo, we expressed wild-type caveolin-1 as a transgene in mice. Analysis of primary cultures of mouse embryonic fibroblasts from caveolin-1 transgenic mice reveals that caveolin-1 induces 1) cells to exit the S phase of the cell cycle with a concomitant increase in the G(0)/G(1) population, 2) a reduction in cellular proliferation, and 3) a reduction in the DNA replication rate. Finally, we demonstrate that caveolin-1-mediated cell cycle arrest occurs through a p53/p21-dependent pathway. Taken together, our results provide the first evidence that caveolin-1 expression plays a critical role in the modulation of cell cycle progression in vivo.


Assuntos
Caveolinas/metabolismo , Ciclo Celular/fisiologia , Ciclinas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Caspase 3 , Caspases/metabolismo , Caveolina 1 , Separação Celular , Células Cultivadas , Meios de Cultura Livres de Soro , Inibidor de Quinase Dependente de Ciclina p21 , Inibidores Enzimáticos/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Genes Reporter , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Gravidez , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estaurosporina/farmacologia
3.
Am J Physiol Cell Physiol ; 280(5): C1204-14, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11287334

RESUMO

Caveolin-1 is a principal structural component of caveolae membranes. These membrane microdomains participate in the regulation of signaling, transcytosis, and cholesterol homeostasis at the plasma membrane. In the present study, we determined the effect of caveolin-1 expression on cellular cholesterol efflux mediated by high-density lipoprotein (HDL). We evaluated this effect in parental NIH/3T3 cells as well as in two transformed NIH/3T3 cell lines in which caveolin-1 protein levels are dramatically downregulated. Compared with parental NIH/3T3 cells, these two transformed cell lines effluxed cholesterol more rapidly to HDL. In addition, NIH/3T3 cells harboring caveolin-1 antisense also effluxed cholesterol more rapidly to HDL. However, this effect was not due to changes in total cellular cholesterol content. We further showed that chronic HDL exposure reduced caveolin-1 protein expression in NIH/3T3 cells. HDL exposure also inhibited caveolin-1 promoter activity, suggesting a direct negative effect of HDL on caveolin-1 gene transcription. Moreover, we showed that HDL-induced downregulation of caveolin-1 prevents the uptake of oxidized low-density lipoprotein in human endothelial cells. These data suggest a novel proatherogenic role for caveolin-1, i.e., regarding the uptake and/or transcytosis of modified lipoproteins.


Assuntos
Caveolinas/fisiologia , Colesterol/metabolismo , Lipoproteínas HDL/farmacologia , Fatores de Transcrição , Células 3T3 , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caveolina 1 , Caveolinas/genética , Linhagem Celular Transformada , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genes abl , Genes ras , Cinética , Luciferases/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Regiões Promotoras Genéticas , Proteína de Ligação a Elemento Regulador de Esterol 1 , Transfecção
4.
J Biol Chem ; 275(7): 5043-51, 2000 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-10671546

RESUMO

Recombinant adenoviruses with cDNAs for human apolipoprotein A-I (wild type (wt) apoA-I) and three mutants, referred to as Delta4-5A-I, Delta5-6A-I, and Delta6-7A-I, that have deletions removing regions coding for amino acids 100-143, 122-165, and 144-186, respectively, were created to study structure/function relationships of apoA-I in vivo. All mutants were expressed at lower concentrations than wt apoA-I in plasma of fasting apoA-I-deficient mice. The Delta5-6A-I mutant was found primarily in the lipid-poor high density lipoprotein (HDL) pool and at lower concentrations than Delta4-5A-I and Delta6-7A-I that formed more buoyant HDL(2/3) particles. At an elevated adenovirus dose and earlier blood sampling from fed mice, both Delta5-6A-I and Delta6-7A-I increased HDL-free cholesterol and phospholipid but not cholesteryl ester. In contrast, wt apoA-I and Delta4-5A-I produced significant increases in HDL cholesteryl ester. Further analysis showed that Delta6-7A-I and native apoA-I could bind similar amounts of phospholipid and cholesterol that were reduced slightly for Delta5-6A-I and greatly for Delta4-5A-I. We conclude from these findings that amino acids (aa) 100-143, specifically helix 4 (aa 100-121), contributes to the maturation of HDL through a role in lipid binding and that the downstream sequence (aa 144-186) centered around helix 6 (aa 144-165) is responsible for the activation of lecithin-cholesterol acyltransferase.


Assuntos
Apolipoproteína A-I/metabolismo , Metabolismo dos Lipídeos , Lipoproteínas HDL/metabolismo , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Apolipoproteína A-I/química , Apolipoproteína A-I/genética , DNA Complementar , Ativação Enzimática , Humanos , Lipoproteínas HDL/genética , Camundongos , Mutação , Conformação Proteica , Deleção de Sequência , Ultracentrifugação
5.
Biochemistry ; 38(44): 14524-33, 1999 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-10545174

RESUMO

The contribution of the amphipathic alpha-helices of apoA-I toward lipid efflux from human skin fibroblasts and macrophage was examined. Four apoA-I mutants were designed, each by deletion of a pair of predicted adjacent helices. Three mutants lacked two consecutive central alpha-helices [Delta(100-143), Delta(122-165), and Delta(144-186)], whereas the final mutant lacked the C-terminal domain [Delta(187-243)]. When compared to recombinant wild-type apoA-I and mutants with central domain deletions, Delta(187-243) exhibited a marked reduction in its ability to promote either cholesterol or phospholipid efflux from THP-1 macrophages. This mutant also demonstrated a decreased ability to bind lipids and to form lipoprotein complexes. In contrast, the four mutants and apoA-I equally supported cholesterol efflux from fibroblasts, albeit with a reduced capacity when compared to macrophages. Delta(187-243) bound poorly to the macrophage cell surface when compared to apoA-I, and competitive binding studies with the central domain and C-terminal deletions mutants showed that only Delta(187-243) did not compete effectively with [(125)I]apoA-I. Omission of PMA during cholesterol loading enhanced cholesterol efflux to both apoA-I (1.5-fold) and the C-terminal deletion mutant (2.5-fold). Inclusion of the Sandoz ACAT inhibitor (58-035) during loading and, in the absence of PMA, increased and equalized cholesterol efflux to apoA-I and Delta(187-243). Surprisingly, omission of PMA during cholesterol loading had minimal effects on the binding of apoA-I or Delta(187-243) to the THP-1 cell surface. Overall, these results show that cholesterol efflux from cells such as fibroblasts does not require any specific sequence between residues 100 and 243 of apoA-I. In contrast, optimal cholesterol efflux in macrophages requires binding of the C-terminal domain of apoA-I to a cell surface-binding site and the subsequent translocation of intracellular cholesterol to an efflux-competent pool.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Amidas/farmacologia , Apolipoproteína A-I/genética , Sequência de Bases , Membrana Celular/metabolismo , Células Cultivadas , Colesterol/metabolismo , DNA Complementar/genética , Inibidores Enzimáticos/farmacologia , Fibroblastos/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Compostos de Organossilício/farmacologia , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Esterol O-Aciltransferase/antagonistas & inibidores , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA