Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Microbiol ; 23(1): e13271, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979009

RESUMO

The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterised by a long-lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3-phosphate (PI3P)-labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P-labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3-labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.


Assuntos
Autofagia , Hepatócitos/parasitologia , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitologia , Esporozoítos/metabolismo , Vacúolos/parasitologia , Animais , Linhagem Celular , Feminino , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Malária/parasitologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Organismos Geneticamente Modificados
2.
Artigo em Inglês | MEDLINE | ID: mdl-30073152

RESUMO

Protection against a malaria infection can be achieved by immunization with live-attenuated Plasmodium sporozoites and while the precise mechanisms of protection remain unknown, T cell responses are thought to be critical in the elimination of infected liver cells. In cancer immunotherapies, agonistic antibodies that target T cell surface proteins, such as CD27, OX40 (CD134), and 4-1BB (CD137), have been used to enhance T cell function by increasing co-stimulation. In this study, we have analyzed the effect of agonistic OX40 monoclonal antibody treatment on protective immunity induced in mice immunized with genetically attenuated parasites (GAPs). OX40 stimulation enhanced protective immunity after vaccination as shown by an increase in the number of protected mice and delay to blood-stage infection after challenge with wild-type sporozoites. Consistent with the enhanced protective immunity enforced OX40 stimulation resulted in an increased expansion of antigen-experienced effector (CD11ahiCD44hi) CD8+ and CD4+ T cells in the liver and spleen and also increased IFN-γ and TNF producing CD4+ T cells in the liver and spleen. In addition, GAP immunization plus α-OX40 treatment significantly increased sporozoite-specific IgG responses. Thus, we demonstrate that targeting T cell costimulatory receptors can improve sporozoite-based vaccine efficacy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Imunidade Celular , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Receptores OX40/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado/imunologia , Camundongos , Receptores OX40/imunologia , Baço/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
3.
PLoS One ; 4(11): e7881, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19924309

RESUMO

The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite's life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luc(con), expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1-5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium.


Assuntos
Fígado/parasitologia , Malária/parasitologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Diagnóstico por Imagem/métodos , Feminino , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/parasitologia , Humanos , Luminescência , Malária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esporozoítos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA