Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873369

RESUMO

More than twenty recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1-Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.

2.
Cell Rep ; 40(3): 111085, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858542

RESUMO

Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures. Tsc1 depletion occurs in a subset of layer 2/3 cortical pyramidal neurons, leading to development of cytomegalic pyramidal neurons (CPNs) that mimic dysplastic neurons in human TSC, featuring abnormal dendritic and axonal overgrowth, enhanced glutamatergic synaptic transmission, and increased susceptibility to seizure-like activities. We provide evidence that enhanced synaptic excitation in CPNs contributes to cortical hyperexcitability and epileptogenesis. In contrast, astrocytic regulation of synapse formation and synaptic transmission remains unchanged after late embryonic radial glial Tsc1 inactivation, and astrogliosis evolves secondary to seizures.


Assuntos
Esclerose Tuberosa , Animais , Humanos , Camundongos , Células Piramidais , Convulsões , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
3.
Brain ; 145(10): 3666-3680, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-35552612

RESUMO

While several studies have attributed the development of tumour-associated seizures to an excitatory-inhibitory imbalance, we have yet to resolve the spatiotemporal interplay between different types of neuron in glioma-infiltrated cortex. Herein, we combined methods for single unit analysis of microelectrode array recordings with wide-field optical mapping of Thy1-GCaMP pyramidal cells in an ex vivo acute slice model of diffusely infiltrating glioma. This enabled simultaneous tracking of individual neurons from both excitatory and inhibitory populations throughout seizure-like events. Moreover, our approach allowed for observation of how the crosstalk between these neurons varied spatially, as we recorded across an extended region of glioma-infiltrated cortex. In tumour-bearing slices, we observed marked alterations in single units classified as putative fast-spiking interneurons, including reduced firing, activity concentrated within excitatory bursts and deficits in local inhibition. These results were correlated with increases in overall excitability. Mechanistic perturbation of this system with the mTOR inhibitor AZD8055 revealed increased firing of putative fast-spiking interneurons and restoration of local inhibition, with concomitant decreases in overall excitability. Altogether, our findings suggest that diffusely infiltrating glioma affect the interplay between excitatory and inhibitory neuronal populations in a reversible manner, highlighting a prominent role for functional mechanisms linked to mTOR activation.


Assuntos
Glioma , Células Piramidais , Humanos , Potenciais de Ação/fisiologia , Células Piramidais/fisiologia , Neurônios/fisiologia , Convulsões , Serina-Treonina Quinases TOR
4.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33351789

RESUMO

Paucity of the glucose transporter-1 (Glut1) protein resulting from haploinsufficiency of the SLC2A1 gene arrests cerebral angiogenesis and disrupts brain function to cause Glut1 deficiency syndrome (Glut1 DS). Restoring Glut1 to Glut1 DS model mice prevents disease, but the precise cellular sites of action of the transporter, its temporal requirements, and the mechanisms linking scarcity of the protein to brain cell dysfunction remain poorly understood. Here, we show that Glut1 functions in a cell-autonomous manner in the cerebral microvasculature to affect endothelial tip cells and, thus, brain angiogenesis. Moreover, brain endothelial cell-specific Glut1 depletion not only triggers a severe neuroinflammatory response in the Glut1 DS brain, but also reduces levels of brain-derived neurotrophic factor (BDNF) and causes overt disease. Reduced BDNF correlated with fewer neurons in the Glut1 DS brain. Controlled depletion of the protein demonstrated that brain pathology and disease severity was greatest when Glut1 scarcity was induced neonatally, during brain angiogenesis. Reducing Glut1 at later stages had mild or little effect. Our results suggest that targeting brain endothelial cells during early development is important to ensure proper brain angiogenesis, prevent neuroinflammation, maintain BDNF levels, and preserve neuron numbers. This requirement will be essential for any disease-modifying therapeutic strategy for Glut1 DS.


Assuntos
Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Transportador de Glucose Tipo 1/deficiência , Transportador de Glucose Tipo 1/metabolismo , Proteínas de Transporte de Monossacarídeos/deficiência , Animais , Animais Recém-Nascidos , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/deficiência , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Técnicas de Silenciamento de Genes , Transportador de Glucose Tipo 1/genética , Haploinsuficiência , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Neovascularização Fisiológica/genética , Neurônios/metabolismo , Neurônios/patologia , Fenótipo
5.
Mol Ther ; 28(7): 1706-1716, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353324

RESUMO

Developmental and epileptic encephalopathy (DEE) associated with de novo variants in the gene encoding dynamin-1 (DNM1) is a severe debilitating disease with no pharmacological remedy. Like most genetic DEEs, the majority of DNM1 patients suffer from therapy-resistant seizures and comorbidities such as intellectual disability, developmental delay, and hypotonia. We tested RNAi gene therapy in the Dnm1 fitful mouse model of DEE using a Dnm1-targeted therapeutic microRNA delivered by a self-complementary adeno-associated virus vector. Untreated or control-injected fitful mice have growth delay, severe ataxia, and lethal tonic-clonic seizures by 3 weeks of age. These major impairments are mitigated following a single treatment in newborn mice, along with key underlying cellular features including gliosis, cell death, and aberrant neuronal metabolic activity typically associated with recurrent seizures. Our results underscore the potential for RNAi gene therapy to treat DNM1 disease and other genetic DEEs where treatment would require inhibition of the pathogenic gene product.


Assuntos
Dinamina I/genética , Síndromes Epilépticas/terapia , Terapia Genética/métodos , MicroRNAs/genética , Animais , Animais Recém-Nascidos , Dependovirus/genética , Modelos Animais de Doenças , Síndromes Epilépticas/genética , Síndromes Epilépticas/patologia , Vetores Genéticos/administração & dosagem , Humanos , Infusões Intraventriculares , Camundongos , MicroRNAs/administração & dosagem , Interferência de RNA , Resultado do Tratamento
6.
PLoS Comput Biol ; 15(8): e1007227, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425505

RESUMO

RNA-protein interaction plays important roles in post-transcriptional regulation. Recent advancements in cross-linking and immunoprecipitation followed by sequencing (CLIP-seq) technologies make it possible to detect the binding peaks of a given RNA binding protein (RBP) at transcriptome scale. However, it is still challenging to predict the functional consequences of RBP binding peaks. In this study, we propose the Protein-RNA Association Strength (PRAS), which integrates the intensities and positions of the binding peaks of RBPs for functional mRNA targets prediction. We illustrate the superiority of PRAS over existing approaches on predicting the functional targets of two related but divergent CELF (CUGBP, ELAV-like factor) RBPs in mouse brain and muscle. We also demonstrate the potential of PRAS for wide adoption by applying it to the enhanced CLIP-seq (eCLIP) datasets of 37 RNA decay related RBPs in two human cell lines. PRAS can be utilized to investigate any RBPs with available CLIP-seq peaks. PRAS is freely available at http://ouyanglab.jax.org/pras/.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação/estatística & dados numéricos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Software , Animais , Sequência de Bases , Sítios de Ligação/genética , Encéfalo/metabolismo , Proteínas CELF/genética , Proteínas CELF/metabolismo , Biologia Computacional , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Células K562 , Camundongos , Músculos/metabolismo , Proteínas de Ligação a RNA/genética
7.
Nature ; 543(7645): 438-442, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28199306

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that responds to diverse environmental signals and is deregulated in many human diseases, including cancer and epilepsy. Amino acids are a key input to this system, and act through the Rag GTPases to promote the translocation of mTORC1 to the lysosomal surface, its site of activation. Multiple protein complexes regulate the Rag GTPases in response to amino acids, including GATOR1, a GTPase activating protein for RAGA, and GATOR2, a positive regulator of unknown molecular function. Here we identify a protein complex (KICSTOR) that is composed of four proteins, KPTN, ITFG2, C12orf66 and SZT2, and that is required for amino acid or glucose deprivation to inhibit mTORC1 in cultured human cells. In mice that lack SZT2, mTORC1 signalling is increased in several tissues, including in neurons in the brain. KICSTOR localizes to lysosomes; binds and recruits GATOR1, but not GATOR2, to the lysosomal surface; and is necessary for the interaction of GATOR1 with its substrates, the Rag GTPases, and with GATOR2. Notably, several KICSTOR components are mutated in neurological diseases associated with mutations that lead to hyperactive mTORC1 signalling. Thus, KICSTOR is a lysosome-associated negative regulator of mTORC1 signalling, which, like GATOR1, is mutated in human disease.


Assuntos
Proteínas de Transporte/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aminoácidos/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Linhagem Celular , Feminino , Proteínas Ativadoras de GTPase , Glucose/deficiência , Glucose/metabolismo , Humanos , Cadeias alfa de Integrinas , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Ligação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Especificidade por Substrato , Serina-Treonina Quinases TOR/antagonistas & inibidores
8.
PLoS One ; 10(5): e0125897, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25933409

RESUMO

Alzheimer's disease (AD) is a leading cause of dementia in the elderly and is characterized by amyloid plaques, neurofibrillary tangles (NFTs) and neuronal dysfunction. Early onset AD (EOAD) is commonly caused by mutations in amyloid precursor protein (APP) or genes involved in the processing of APP including the presenilins (e.g. PSEN1 or PSEN2). In general, mouse models relevant to EOAD recapitulate amyloidosis, show only limited amounts of NFTs and neuronal cell dysfunction and low but significant levels of seizure susceptibility. To investigate the effect of genetic background on these phenotypes, we generated APPswe and PSEN1de9 transgenic mice on the seizure prone inbred strain background, DBA/2J. Previous studies show that the DBA/2J genetic background modifies plaque deposition in the presence of mutant APP but the impact of PSEN1de9 has not been tested. Our study shows that DBA/2J.APPswePSEN1de9 mice are significantly more prone to premature lethality, likely to due to lethal seizures, compared to B6.APPswePSEN1de9 mice-70% of DBA/2J.APPswePSEN1de9 mice die between 2-3 months of age. Of the DBA/2J.APPswePSEN1de9 mice that survived to 6 months of age, plaque deposition was greatly reduced compared to age-matched B6.APPswePSEN1de9 mice. The reduction in plaque deposition appears to be independent of microglia numbers, reactive astrocytosis and complement C5 activity.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Amiloide/metabolismo , Progressão da Doença , Convulsões/complicações , Convulsões/patologia , Envelhecimento/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Cromossomos de Mamíferos/genética , Complemento C5/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Microglia/patologia , Mutagênese Insercional , Neurônios/patologia , Fenótipo , Placa Amiloide/patologia , Presenilinas/metabolismo , Transgenes
9.
PLoS Genet ; 10(7): e1004454, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010494

RESUMO

Absence epilepsy (AE) is a common type of genetic generalized epilepsy (GGE), particularly in children. AE and GGE are complex genetic diseases with few causal variants identified to date. Gria4 deficient mice provide a model of AE, one for which the common laboratory inbred strain C3H/HeJ (HeJ) harbors a natural IAP retrotransposon insertion in Gria4 that reduces its expression 8-fold. Between C3H and non-seizing strains such as C57BL/6, genetic modifiers alter disease severity. Even C3H substrains have surprising variation in the duration and incidence of spike-wave discharges (SWD), the characteristic electroencephalographic feature of absence seizures. Here we discovered extensive IAP retrotransposition in the C3H substrain, and identified a HeJ-private IAP in the Pcnxl2 gene, which encodes a putative multi-transmembrane protein of unknown function, resulting in decreased expression. By creating new Pcnxl2 frameshift alleles using TALEN mutagenesis, we show that Pcnxl2 deficiency is responsible for mitigating the seizure phenotype - making Pcnxl2 the first known modifier gene for absence seizures in any species. This finding gave us a handle on genetic complexity between strains, directing us to use another C3H substrain to map additional modifiers including validation of a Chr 15 locus that profoundly affects the severity of SWD episodes. Together these new findings expand our knowledge of how natural variation modulates seizures, and highlights the feasibility of characterizing and validating modifiers in mouse strains and substrains in the post-genome sequence era.


Assuntos
Epilepsia Tipo Ausência/genética , Proteínas de Neoplasias/genética , Receptores de AMPA/genética , Convulsões/genética , Alelos , Animais , Mapeamento Cromossômico , Modelos Animais de Doenças , Epilepsia Tipo Ausência/patologia , Humanos , Camundongos , Fenótipo , Retroelementos/genética , Convulsões/patologia
10.
Stem Cells ; 31(5): 1010-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23390122

RESUMO

Id2 is a helix-loop-helix transcription factor essential for normal development, and its expression is dysregulated in many human neurological conditions. Although it is speculated that elevated Id2 levels contribute to the pathogenesis of these disorders, it is unknown whether dysregulated Id2 expression is sufficient to perturb normal brain development or function. Here, we show that mice with elevated Id2 expression during embryonic stages develop microcephaly, and that females in particular are prone to generalized tonic-clonic seizures. Analyses of Id2 transgenic brains indicate that Id2 activity is highly cell context specific: elevated Id2 expression in naive neural stem cells (NSCs) in early neuroepithelium induces apoptosis and loss of NSCs and intermediate progenitors. Activation of Id2 in maturing neuroepithelium results in less severe phenotypes and is accompanied by elevation of G1 cyclin expression and p53 target gene expression. In contrast, activation of Id2 in committed intermediate progenitors has no significant phenotype. Functional analysis with Id2-overexpressing and Id2-null NSCs shows that Id2 negatively regulates NSC self-renewal in vivo, in contrast to previous cell culture experiments. Deletion of p53 function from Id2-transgenic brains rescues apoptosis and results in increased incidence of brain tumors. Furthermore, Id2 overexpression normalizes the increased self-renewal of p53-null NSCs, suggesting that Id2 activates and modulates the p53 pathway in NSCs. Together, these data suggest that elevated Id2 expression in embryonic brains can cause deregulated NSC self-renewal, differentiation, and survival that manifest in multiple neurological outcomes in mature brains, including microcephaly, seizures, and brain tumors.


Assuntos
Encéfalo/anormalidades , Encéfalo/citologia , Proteína 2 Inibidora de Diferenciação/biossíntese , Células-Tronco Neurais/metabolismo , Animais , Encéfalo/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/citologia
11.
Hum Mol Genet ; 20(5): 988-99, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21159799

RESUMO

In a phenotype-driven mutagenesis screen, a novel, dominant mouse mutation, Nmf350, caused low seizure threshold, sporadic tonic-clonic seizures, brain enlargement and ectopic neurons in the dentate hilus and molecular layer of the hippocampus. Genetic mapping implicated Akt3, one of four candidates within the critical interval. Sequencing analysis revealed that mutants have a missense mutation in Akt3 (encoding one of three AKT/protein kinase B molecules), leading to a non-synonymous amino acid substitution in the highly conserved protein kinase domain. Previous knockout studies showed that Akt3 is pivotal in postnatal brain development, including a smaller brain, although seizures were not observed. In contrast to Akt3(Nmf350), we find that Akt3 null mice exhibit an elevated seizure threshold. An in vitro kinase assay revealed that Akt3(Nmf350) confers higher enzymatic activity, suggesting that Akt3(Nmf350) might enhance AKT signaling in the brain. In the dentate gyrus of Akt3(Nmf350) homozygotes, we also observed a modest increase in immunoreactivity of phosphorylated ribosomal protein S6, an AKT pathway downstream target. Together these findings suggest that Akt3(Nmf350) confers an increase of AKT3 activity in specific neuronal populations in the brain, and a unique dominant phenotype. Akt3(Nmf350) mice provide a new tool for studying physiological roles of AKT signaling in the brain, and potentially novel mechanisms for epilepsy.


Assuntos
Suscetibilidade a Doenças , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Convulsões/enzimologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Fosforilação , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Convulsões/genética , Alinhamento de Sequência , Transdução de Sinais
12.
J Biol Chem ; 281(31): 22352-22359, 2006 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16751186

RESUMO

The gene defective in fidget mice encodes fidgetin, a member of the AAA (ATPases associated with diverse cellular activities) family of ATPases. Using a yeast two-hybrid screen, we identified cAMP-dependent protein kinase A anchoring protein 95 kDa (AKAP95) as a potential fidgetin-binding protein. Epitope-tagged fidgetin co-localized with endogenous AKAP95 in the nuclear matrix, and the physical interaction between fidgetin and AKAP95 was further confirmed by reciprocal immunoprecipitation. To evaluate the biological significance of the fidgetin-AKAP95 binding, we created AKAP95 mutant mice through a gene trap strategy. Akap95 mutant mice are surprisingly viable with no overt phenotype. However, a significant number of mice carrying both Akap95 and fidget mutations die soon after birth due to cleft palate, consistent with the overlapping expression of AKAP95 and fidgetin in the branchial arches during mouse embryogenesis. These results expand the spectrum of the pleiotropic phenotypes of fidget mice and provide new leads on the in vivo function of AKAP95.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Morfogênese , Proteínas Nucleares/metabolismo , Palato/crescimento & desenvolvimento , Proteínas de Ancoragem à Quinase A , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Animais , Fissura Palatina/genética , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Camundongos , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos , Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Fenótipo , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
13.
J Cell Biol ; 170(4): 607-18, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16103228

RESUMO

Generation and turnover of phosphoinositides (PIs) must be coordinated in a spatial- and temporal-restricted manner. The small GTPase Rab5 interacts with two PI 3-kinases, Vps34 and PI3Kbeta, suggesting that it regulates the production of 3-PIs at various stages of the early endocytic pathway. Here, we discovered that Rab5 also interacts directly with PI 5- and PI 4-phosphatases and stimulates their activity. Rab5 regulates the production of phosphatidylinositol 3-phosphate (PtdIns[3]P) through a dual mechanism, by directly phosphorylating phosphatidylinositol via Vps34 and by a hierarchical enzymatic cascade of phosphoinositide-3-kinasebeta (PI3Kbeta), PI 5-, and PI 4-phosphatases. The functional importance of such an enzymatic pathway is demonstrated by the inhibition of transferrin uptake upon silencing of PI 4-phosphatase and studies in weeble mutant mice, where deficiency of PI 4-phosphatase causes an increase of PtdIns(3,4)P2 and a reduction in PtdIns(3)P. Activation of PI 3-kinase at the plasma membrane is accompanied by the recruitment of Rab5, PI 4-, and PI 5-phosphatases to the cell cortex. Our data provide the first evidence for a dual role of a Rab GTPase in regulating both generation and turnover of PIs via PI kinases and phosphatases to coordinate signaling functions with organelle homeostasis.


Assuntos
Endocitose , Fosfatidilinositóis/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Catálise , Compartimento Celular , Cromatografia de Afinidade , Regulação para Baixo/genética , Ativação Enzimática , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Transporte Proteico , Soro , Transferrina/metabolismo , Proteínas rab5 de Ligação ao GTP/isolamento & purificação
14.
Exp Cell Res ; 304(1): 50-8, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15707573

RESUMO

The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/química , Animais , Camundongos , Camundongos Mutantes , Proteínas Associadas aos Microtúbulos , Proteínas Nucleares/química
15.
Nature ; 419(6905): 367-74, 2002 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12353028

RESUMO

Harlequin (Hq) mutant mice have progressive degeneration of terminally differentiated cerebellar and retinal neurons. We have identified the Hq mutation as a proviral insertion in the apoptosis-inducing factor (Aif) gene, causing about an 80% reduction in AIF expression. Mutant cerebellar granule cells are susceptible to exogenous and endogenous peroxide-mediated apoptosis, but can be rescued by AIF expression. Overexpression of AIF in wild-type granule cells further decreases peroxide-mediated cell death, suggesting that AIF serves as a free radical scavenger. In agreement, dying neurons in aged Hq mutant mice show oxidative stress. In addition, neurons damaged by oxidative stress in both the cerebellum and retina of Hq mutant mice re-enter the cell cycle before undergoing apoptosis. Our results provide a genetic model of oxidative stress-mediated neurodegeneration and demonstrate a direct connection between cell cycle re-entry and oxidative stress in the ageing central nervous system.


Assuntos
Cerebelo/patologia , Flavoproteínas/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Mutação/genética , Neurônios/patologia , Estresse Oxidativo , Retina/patologia , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose , Catalase/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Regulação para Baixo , Flavoproteínas/metabolismo , Sequestradores de Radicais Livres/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Microscopia Eletrônica , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Reação em Cadeia da Polimerase , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA