Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Immunol ; 44(12): 986-998, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37940394

RESUMO

Inflammation must be tightly regulated to both defend against pathogens and restore tissue homeostasis. The resolution of inflammatory responses is a dynamic process orchestrated by cells of the immune system. Macrophages, tissue-resident innate immune cells, are key players in modulating inflammation. Here, we review recent work highlighting the importance of macrophages in tissue resolution and the return to homeostasis. We propose that enhancing macrophage pro-resolution functions represents a novel and widely applicable therapeutic strategy to dampen inflammation, promote repair, and restore tissue integrity and function.


Assuntos
Inflamação , Macrófagos , Humanos , Homeostase , Fenótipo
2.
Immunity ; 55(11): 2044-2058.e5, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36288724

RESUMO

Tumors are populated by antigen-presenting cells (APCs) including macrophage subsets with distinct origins and functions. Here, we examined how cancer impacts mononuclear phagocytic APCs in a murine model of breast cancer. Tumors induced the expansion of monocyte-derived tumor-associated macrophages (TAMs) and the activation of type 1 dendritic cells (DC1s), both of which expressed and required the transcription factor interferon regulatory factor-8 (IRF8). Although DC1s mediated cytotoxic T lymphocyte (CTL) priming in tumor-draining lymph nodes, TAMs promoted CTL exhaustion in the tumor, and IRF8 was required for TAMs' ability to present cancer cell antigens. TAM-specific IRF8 deletion prevented exhaustion of cancer-cell-reactive CTLs and suppressed tumor growth. Tumors from patients with immune-infiltrated renal cell carcinoma had abundant TAMs that expressed IRF8 and were enriched for an IRF8 gene expression signature. Furthermore, the TAM-IRF8 signature co-segregated with CTL exhaustion signatures across multiple cancer types. Thus, CTL exhaustion is promoted by TAMs via IRF8.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Macrófagos Associados a Tumor , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linfócitos T Citotóxicos , Células Dendríticas
3.
Proc Natl Acad Sci U S A ; 119(32): e2205360119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35930670

RESUMO

Animal tissues comprise diverse cell types. However, the mechanisms controlling the number of each cell type within tissue compartments remain poorly understood. Here, we report that different cell types utilize distinct strategies to control population numbers. Proliferation of fibroblasts, stromal cells important for tissue integrity, is limited by space availability. In contrast, proliferation of macrophages, innate immune cells involved in defense, repair, and homeostasis, is constrained by growth factor availability. Examination of density-dependent gene expression in fibroblasts revealed that Hippo and TGF-ß target genes are both regulated by cell density. We found YAP1, the transcriptional coactivator of the Hippo signaling pathway, directly regulates expression of Csf1, the lineage-specific growth factor for macrophages, through an enhancer of Csf1 that is specifically active in fibroblasts. Activation of YAP1 in fibroblasts elevates Csf1 expression and is sufficient to increase the number of macrophages at steady state. Our data also suggest that expression programs in fibroblasts that change with density may result from sensing of mechanical force through actin-dependent mechanisms. Altogether, we demonstrate that two different modes of population control are connected and coordinated to regulate cell numbers of distinct cell types. Sensing of the tissue environment may serve as a general strategy to control tissue composition.


Assuntos
Proliferação de Células , Fibroblastos , Macrófagos , Animais , Contagem de Células , Fibroblastos/fisiologia , Via de Sinalização Hippo , Macrófagos/citologia , Macrófagos/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP/metabolismo
4.
Immunol Rev ; 302(1): 86-103, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101202

RESUMO

Fibroblasts and macrophages are universal cell types across all mammalian tissues. These cells differ in many ways including their cellular origins; dynamics of renewal, recruitment, and motility within tissues; roles in tissue structure and secretion of signaling molecules; and contributions to the activation and progression of immune responses. However, many of the features that make these two cell types unique are not opposing, but instead complementary. This review will present cell-cell communication in this context and discuss how complementarity makes fibroblasts and macrophages highly compatible partners in the maintenance of tissue homeostasis.


Assuntos
Fibroblastos , Macrófagos , Animais , Comunicação Celular , Homeostase , Imunidade
5.
Sci Signal ; 12(571)2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837303

RESUMO

Heterogeneity in the behavior of genetically and developmentally equivalent cells is becoming increasingly appreciated. There are several sources of cellular heterogeneity, including both intrinsic and extrinsic noise. We found that some aspects of heterogeneity in the response of macrophages to bacterial lipopolysaccharide (LPS) were due to intercellular desynchronization of the molecular clock, a cell-intrinsic oscillator. We found that the ratio of the relative expression of two clock genes, Nfil3 and Dbp, expressed in opposite phases of the clock, determined the fraction of cells that produced the cytokine IL-12p40 in response to LPS. The clock can be entrained by various environmental stimuli, making it a mechanism by which population-level heterogeneity and the inflammatory response can be regulated.


Assuntos
Relógios Biológicos/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Macrófagos/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Relógios Biológicos/genética , Relógios Biológicos/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Subunidade p40 da Interleucina-12/genética , Subunidade p40 da Interleucina-12/imunologia , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
6.
Cell ; 172(4): 744-757.e17, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29398113

RESUMO

Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions.


Assuntos
Comunicação Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/metabolismo , Macrófagos/metabolismo , Animais , Sobrevivência Celular/fisiologia , Feminino , Fibroblastos/citologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Transgênicos
7.
Trends Cancer ; 2(1): 20-34, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26949745

RESUMO

Macrophages are innate immune cells with evolutionarily conserved functions in tissue maintenance and host defense. As such, macrophages are among the first hematopoietic cells that seed developing tissues, and respond to inflammatory insults by in situ proliferation or de novo differentiation from monocytes. Recent studies have revealed that monocyte-derived tumor-induced macrophages represent a major tumor-associated macrophage population, which can further expand following their differentiation in tumors. Compared to tissue-resident tumor-associated macrophages, these newly differentiated cells are phenotypically distinct, and likely play a unique role in tissue dysregulation and immune modulation in cancer. These findings imply that tumor growth elicits a specific innate immune response. In this review, we explore the different routes of macrophage seeding and maintenance in tissues during steady state and inflammation and how these principles underlie the responses observed during tumor development. In addition, we highlight the relationship between the origin and function of macrophages in different settings and how this knowledge may be used to create new opportunities for cancer immunotherapy.

8.
Cell ; 164(3): 365-77, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26806130

RESUMO

Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remains obscure. Here, we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, T cell receptor (TCR)αß, and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a, and CD103, these cells share a gene-expression signature distinct from those of conventional NK cells, T cells, and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15 deficiency, but not Nfil3 deficiency, results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type-1-like innate lymphoid cells and type 1 innate-like T cells.


Assuntos
Linfócitos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Monitorização Imunológica , Subpopulações de Linfócitos T/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Granzimas/metabolismo , Interleucina-15/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
9.
Bio Protoc ; 5(16)2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-27441205

RESUMO

Tumors develop in a complex microenvironment alongside numerous cell types that impact their survival. Immune cells make up a large proportion of these accessory cells and many are known to promote tumor progression. Macrophages, in particular, are associated with poor patient prognosis and are therefore potential candidates for therapeutic targeting in cancer. However, to develop successful strategies to target macrophages, it is important to clarify whether these cells are derived from blood-borne precursors or a tissue-resident population. Parabiosis, or the surgical connection of two mice resulting in a shared blood circulation, allows the distinction between these two cellular sources. Here, we describe the use of parabiosis to define cell ontogeny in a mouse model of breast cancer.

10.
Science ; 344(6186): 921-5, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24812208

RESUMO

Long recognized as an evolutionarily ancient cell type involved in tissue homeostasis and immune defense against pathogens, macrophages are being rediscovered as regulators of several diseases, including cancer. Here we show that in mice, mammary tumor growth induces the accumulation of tumor-associated macrophages (TAMs) that are phenotypically and functionally distinct from mammary tissue macrophages (MTMs). TAMs express the adhesion molecule Vcam1 and proliferate upon their differentiation from inflammatory monocytes, but do not exhibit an "alternatively activated" phenotype. TAM terminal differentiation depends on the transcriptional regulator of Notch signaling, RBPJ; and TAM, but not MTM, depletion restores tumor-infiltrating cytotoxic T cell responses and suppresses tumor growth. These findings reveal the ontogeny of TAMs and a discrete tumor-elicited inflammatory response, which may provide new opportunities for cancer immunotherapy.


Assuntos
Macrófagos/imunologia , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Monócitos e Macrófagos/imunologia , Receptores Notch/metabolismo , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Oncoimmunology ; 3(9): e955346, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25941613

RESUMO

Clinical and experimental models have identified macrophages as potential targets for cancer therapy, however, the nature of macrophage differentiation and function in the context of malignant disease remain largely uncharacterized. This commentary provides the author's perspective on the recently published article "The cellular and molecular origin of tumor-associated macrophages," which demonstrated that tumor growth elicits a specific macrophage differentiation pathway.

12.
Immunity ; 35(1): 123-34, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21757379

RESUMO

Tolerance induction in T cells takes place in most tumors and is thought to account for tumor evasion from immune eradication. Production of the cytokine TGF-ß is implicated in immunosuppression, but the cellular mechanism by which TGF-ß induces T cell dysfunction remains unclear. With a transgenic model of prostate cancer, we showed that tumor development was not suppressed by the adaptive immune system, which was associated with heightened TGF-ß signaling in T cells from the tumor-draining lymph nodes. Blockade of TGF-ß signaling in T cells enhanced tumor antigen-specific T cell responses and inhibited tumor development. Surprisingly, T cell- but not Treg cell-specific ablation of TGF-ß1 was sufficient to augment T cell cytotoxic activity and blocked tumor growth and metastases. These findings reveal that T cell production of TGF-ß1 is an essential requirement for tumors to evade immunosurveillance independent of TGF-ß produced by tumors.


Assuntos
Adenocarcinoma/imunologia , Neoplasias da Próstata/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adenocarcinoma/patologia , Animais , Processos de Crescimento Celular/genética , Processos de Crescimento Celular/imunologia , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Modelos Animais de Doenças , Humanos , Tolerância Imunológica , Vigilância Imunológica , Depleção Linfocítica , Masculino , Camundongos , Camundongos Transgênicos , Oncogenes/fisiologia , Neoplasias da Próstata/patologia , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Evasão Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA