Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 580: 14-19, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34607258

RESUMO

Osteoblasts in vivo form an epithelial-like layer with tight junctions between cells. Bone formation involves mineral transport into the matrix and acid transport to balance pH levels. To study the importance of the pH gradient in vitro, we used Transwell inserts composed of polyethylene terephthalate (PET) membranes with 0.4 µm pores at a density of (2 ± 0.4) x 106 pores per cm2. Mesenchymal stem cells (MSCs) prepared from murine bone marrow were used to investigate alternative conditions whereby osteoblast differentiation would better emulate in vivo bone development. MSCs were characterized by flow cytometry with more than 90% CD44 and 75% Sca-1 labeling. Mineralization was validated with paracellular alkaline phosphatase activity, collagen birefringence, and mineral deposition confirming MSCs identity. We demonstrate that MSCs cultured and differentiated on PET inserts form an epithelial-like layer while mineralizing. Measurement of the transepithelial resistance was ∼1400 Ω•cm2 at three weeks of differentiation. The pH value of the media above and under the cells were measured while cells were in proliferation and differentiation. In mineralizing cells, a difference of 0.145 pH unit was observed between the medium above and under the cells indicating a transepithelial gradient. A significant difference in pH units was observed between the medium above and below the cells in proliferation compared to differentiation. Data on pH below membranes were confirmed by pH-dependent SNARF1 fluorescence. Control cells in proliferative medium did not form an epithelial-like layer, displayed low transepithelial resistance, and there was no significant pH gradient. By transmission electron microscopy, membrane attached osteoblasts in vitro had abundant mitochondria consistent with active transport that occurs in vivo by surface osteoblasts. In keeping with osteoblastic differentiation, scanning electron microscopy identified deposition of extracellular collagen surrounded by hydroxyapatite. This in vitro model is a major advancement in modeling bone in vivo for understanding of osteoblast bone matrix production.


Assuntos
Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Animais , Calcificação Fisiológica , Proliferação de Células , Células Cultivadas , Células Epiteliais/citologia , Concentração de Íons de Hidrogênio , Membranas Artificiais , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese , Polietilenotereftalatos/química
2.
PLoS Pathog ; 15(6): e1007825, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220184

RESUMO

Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.


Assuntos
Toxinas Bacterianas/metabolismo , Células Epiteliais/metabolismo , Epitélio Corneano/metabolismo , Infecções por Proteus/metabolismo , Proteus/metabolismo , Infecções por Serratia/metabolismo , Serratia marcescens/metabolismo , Animais , Toxinas Bacterianas/genética , Morte Celular , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Epitélio Corneano/microbiologia , Epitélio Corneano/patologia , Humanos , Camundongos , Perforina/genética , Perforina/metabolismo , Proteus/genética , Infecções por Proteus/genética , Infecções por Proteus/microbiologia , Infecções por Proteus/patologia , Células RAW 264.7 , Infecções por Serratia/genética , Infecções por Serratia/microbiologia , Infecções por Serratia/patologia , Serratia marcescens/genética , Suínos , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
3.
J Clin Invest ; 123(12): 5212-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24200693

RESUMO

Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/- or Map1lc3B-/-) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6-/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1-/-, Map1lc3B-/-, and Hdac6-/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD.


Assuntos
Autofagia/fisiologia , Cílios/fisiologia , Histona Desacetilases/fisiologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Proteínas Reguladoras de Apoptose/deficiência , Proteína Beclina-1 , Células Cultivadas , Cílios/ultraestrutura , Citosol/enzimologia , Células Epiteliais/ultraestrutura , Feminino , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura , Proteínas Associadas aos Microtúbulos/deficiência , Muco , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/fisiologia , Fenótipo , Fenilbutiratos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Sirtuína 1/deficiência , Sirtuína 1/fisiologia , Produtos do Tabaco , Traqueia/citologia , Ubiquitinação
4.
Cardiovasc Res ; 89(2): 457-63, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20851811

RESUMO

AIMS: Veins are still the best conduits available for arterial bypass surgery. When these arterialized vein grafts fail, it is often due to the development of intimal hyperplasia (IH). We investigated the feasibility and efficacy of the ex vivo pre-treatment of vein grafts with soluble carbon monoxide (CO) in the inhibition of IH. METHODS AND RESULTS: The inferior vena cava was excised from donor rats and placed as an interposition graft into the abdominal aorta of syngeneic rats. Prior to implantation, vein grafts were stored in cold Lactated Ringer (LR) solution with or without CO saturation (bubbling of 100% CO) for 2 h. Three and 6 weeks following grafting, vein grafts treated with cold LR for 2 h developed IH, whereas grafts implanted immediately after harvest demonstrated significantly less IH. Treatment in CO-saturated LR significantly inhibited IH and reduced vascular endothelial cell (VEC) apoptosis. Electron microscopy revealed improved VEC integrity with less platelet/white blood cell aggregation in CO-treated grafts. The effects of CO in preventing IH were associated with activation of hypoxia inducible factor-1α (HIF-1α) and an increase in vascular endothelial growth factor (VEGF) expression at 3-6 h after grafting. Treatment with a HIF-1α inhibitor completely abrogated the induction of VEGF by CO and reversed the protective effects of CO on prevention of IH. CONCLUSION: Ex vivo treatment of vein grafts in CO-saturated LR preserved VEC integrity perioperatively and significantly reduced neointima formation. These effects appear to be mediated through the activation of the HIF1α/VEGF pathway.


Assuntos
Monóxido de Carbono/farmacologia , Oclusão de Enxerto Vascular/prevenção & controle , Preservação de Tecido/métodos , Coleta de Tecidos e Órgãos , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/transplante , Enxerto Vascular , Veia Cava Inferior/efeitos dos fármacos , Veia Cava Inferior/transplante , Animais , Aorta Abdominal/cirurgia , Apoptose/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Oclusão de Enxerto Vascular/etiologia , Oclusão de Enxerto Vascular/metabolismo , Oclusão de Enxerto Vascular/patologia , Hiperplasia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Indazóis/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Soluções Isotônicas/farmacologia , Masculino , Ratos , Ratos Endogâmicos Lew , Lactato de Ringer , Fatores de Tempo , Túnica Íntima/metabolismo , Túnica Íntima/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Enxerto Vascular/efeitos adversos , Veia Cava Inferior/metabolismo , Veia Cava Inferior/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA