Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(3): e3002567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470934

RESUMO

PEX5, the peroxisomal protein shuttling receptor, binds newly synthesized proteins in the cytosol and transports them to the organelle. During its stay at the peroxisomal protein translocon, PEX5 is monoubiquitinated at its cysteine 11 residue, a mandatory modification for its subsequent ATP-dependent extraction back into the cytosol. The reason why a cysteine and not a lysine residue is the ubiquitin acceptor is unknown. Using an established rat liver-based cell-free in vitro system, we found that, in contrast to wild-type PEX5, a PEX5 protein possessing a lysine at position 11 is polyubiquitinated at the peroxisomal membrane, a modification that negatively interferes with the extraction process. Wild-type PEX5 cannot retain a polyubiquitin chain because ubiquitination at cysteine 11 is a reversible reaction, with the E2-mediated deubiquitination step presenting faster kinetics than PEX5 polyubiquitination. We propose that the reversible nonconventional ubiquitination of PEX5 ensures that neither the peroxisomal protein translocon becomes obstructed with polyubiquitinated PEX5 nor is PEX5 targeted for proteasomal degradation.


Assuntos
Cisteína , Lisina , Animais , Ratos , Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/química , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Transporte Proteico , Ubiquitinação
2.
Free Radic Biol Med ; 212: 241-254, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38159891

RESUMO

Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.


Assuntos
Peróxido de Hidrogênio , NAD , Animais , Humanos , Camundongos , NAD/metabolismo , NADP/metabolismo , Dissulfeto de Glutationa/metabolismo , Células HeLa , Células HEK293 , Peróxido de Hidrogênio/metabolismo , Fibroblastos/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glutationa/metabolismo , Oxirredução , Homeostase , Adenina/metabolismo , Mamíferos/metabolismo
3.
ACS Chem Biol ; 18(4): 686-692, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36920024

RESUMO

Aspartic proteases are a small class of proteases implicated in a wide variety of human diseases. Covalent chemical probes for photoaffinity labeling (PAL) of these proteases are underdeveloped. We here report a full on-resin synthesis of clickable PAL probes based on the natural product inhibitor pepstatin incorporating a minimal diazirine reactive group. The position of this group in the inhibitor determines the labeling efficiency. The most effective probes sensitively detect cathepsin D, a biomarker for breast cancer, in cell lysates. Moreover, through chemical proteomics experiments and deep learning algorithms, we identified sequestosome-1, an important player in autophagy, as a direct interaction partner and substrate of cathepsin D.


Assuntos
Ácido Aspártico Endopeptidases , Catepsina D , Pepstatinas , Marcadores de Fotoafinidade , Humanos , Ácido Aspártico Endopeptidases/química , Catepsina D/química , Diazometano , Pepstatinas/química , Pepstatinas/farmacologia , Marcadores de Fotoafinidade/química , Proteína Sequestossoma-1/química
4.
Methods Mol Biol ; 2643: 161-181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952185

RESUMO

As the reversible oxidation of protein cysteine thiols is an important mechanism in signal transduction, it is essential to have access to experimental approaches that allow for spatiotemporal indexing of the cellular sulfenome in response to local changes in H2O2 levels. Here, we provide a step-by-step guide for enriching and identifying the sulfenome of mammalian cells at the subcellular level in response to peroxisome-derived H2O2 by the combined use of (i) a previously developed cell line in which peroxisomal H2O2 production can be induced in a time- and dose-dependent manner; (ii) YAP1C, a genetically encoded yeast AP-1-like transcription factor-based probe that specifically reacts with S-sulfenylated cysteines and traps them through mixed disulfide bonds; and (iii) mass spectrometry. Given that this approach includes differential labeling of reduced and reversibly oxidized cysteine residues, it can also provide additional information on the positions of the modified cysteines. Gaining more in-depth insight into the complex nature of how alterations in peroxisomal H2O2 metabolism modulate the cellular sulfenome is key to our understanding of how these organelles act as redox signaling hubs in health and disease.


Assuntos
Cisteína , Peróxido de Hidrogênio , Animais , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxissomos/metabolismo , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Oxirredução , Mamíferos/metabolismo
5.
Adv Sci (Weinh) ; 9(24): e2200459, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780480

RESUMO

Despite the importance of cell characterization and identification for diagnostic and therapeutic applications, developing fast and label-free methods without (bio)-chemical markers or surface-engineered receptors remains challenging. Here, we exploit the natural cellular response to mild thermal stimuli and propose a label- and receptor-free method for fast and facile cell characterization. Cell suspensions in a dedicated sensor are exposed to a temperature gradient, which stimulates synchronized and spontaneous cell-detachment with sharply defined time-patterns, a phenomenon unknown from literature. These patterns depend on metabolic activity (controlled through temperature, nutrients, and drugs) and provide a library of cell-type-specific indicators, allowing to distinguish several yeast strains as well as cancer cells. Under specific conditions, synchronized glycolytic-type oscillations are observed during detachment of mammalian and yeast-cell ensembles, providing additional cell-specific signatures. These findings suggest potential applications for cell viability analysis and for assessing the collective response of cancer cells to drugs.


Assuntos
Células Eucarióticas , Saccharomyces cerevisiae , Animais , Glicólise , Mamíferos , Saccharomyces cerevisiae/metabolismo
6.
Front Cell Dev Biol ; 10: 888873, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557958

RESUMO

The involvement of peroxisomes in cellular hydrogen peroxide (H2O2) metabolism has been a central theme since their first biochemical characterization by Christian de Duve in 1965. While the role of H2O2 substantially changed from an exclusively toxic molecule to a signaling messenger, the regulatory role of peroxisomes in these signaling events is still largely underappreciated. This is mainly because the number of known protein targets of peroxisome-derived H2O2 is rather limited and testing of specific targets is predominantly based on knowledge previously gathered in related fields of research. To gain a broader and more systematic insight into the role of peroxisomes in redox signaling, new approaches are urgently needed. In this study, we have combined a previously developed Flp-In T-REx 293 cell system in which peroxisomal H2O2 production can be modulated with a yeast AP-1-like-based sulfenome mining strategy to inventory protein thiol targets of peroxisome-derived H2O2 in different subcellular compartments. By using this approach, we identified more than 400 targets of peroxisome-derived H2O2 in peroxisomes, the cytosol, and mitochondria. We also observed that the sulfenylation kinetics profiles of key targets belonging to different protein families (e.g., peroxiredoxins, annexins, and tubulins) can vary considerably. In addition, we obtained compelling but indirect evidence that peroxisome-derived H2O2 may oxidize at least some of its targets (e.g., transcription factors) through a redox relay mechanism. In conclusion, given that sulfenic acids function as key intermediates in H2O2 signaling, the findings presented in this study provide valuable insight into how peroxisomes may be integrated into the cellular H2O2 signaling network.

7.
PLoS One ; 16(4): e0250996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930094

RESUMO

The calcineurin inhibitors (CNI) cyclosporine A and tacrolimus comprise the basis of immunosuppressive regimes in all solid organ transplantation. However, long-term or high exposure to CNI leads to histological and functional renal damage (CNI-associated nephrotoxicity). In the kidney, proximal tubule cells are the only cells that metabolize CNI and these cells are believed to play a central role in the origin of the toxicity for this class of drugs, although the underlying mechanisms are not clear. Several studies have reported oxidative stress as an important mediator of CNI-associated nephrotoxicity in response to CNI exposure in different available proximal tubule cell models. However, former models often made use of supra-therapeutic levels of tissue drug exposure. In addition, they were not shown to express the relevant enzymes (e.g., CYP3A5) and transporters (e.g., P-glycoprotein) for the metabolism of CNI in human proximal tubule cells. Moreover, the used methods for detecting ROS were potentially prone to false positive results. In this study, we used a novel proximal tubule cell model established from human allograft biopsies that demonstrated functional expression of relevant enzymes and transporters for the disposition of CNI. We exposed these cells to CNI concentrations as found in tissue of stable solid organ transplant recipients with therapeutic blood concentrations. We measured the glutathione redox balance in this cell model by using organelle-targeted variants of roGFP2, a highly sensitive green fluorescent reporter protein that dynamically equilibrates with the glutathione redox couple through the action of endogenous glutaredoxins. Our findings provide evidence that CNI, at concentrations commonly found in allograft biopsies, do not alter the glutathione redox balance in mitochondria, peroxisomes, and the cytosol. However, at supra-therapeutic concentrations, cyclosporine A but not tacrolimus increases the ratio of oxidized/reduced glutathione in the mitochondria, suggestive of imbalances in the redox environment.


Assuntos
Inibidores de Calcineurina/farmacologia , Glutationa/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Rim/efeitos dos fármacos , Transplante de Órgãos/métodos , Células Cultivadas , Ciclosporina/farmacologia , Rejeição de Enxerto/prevenção & controle , Humanos , Rim/metabolismo , Rim/patologia , Túbulos Renais Proximais/metabolismo , Oxirredução , Tacrolimo/farmacologia
8.
Int J Mol Sci ; 20(15)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357514

RESUMO

Hydrogen peroxide (H2O2), a non-radical reactive oxygen species generated during many (patho)physiological conditions, is currently universally recognized as an important mediator of redox-regulated processes. Depending on its spatiotemporal accumulation profile, this molecule may act as a signaling messenger or cause oxidative damage. The focus of this review is to comprehensively evaluate the evidence that peroxisomes, organelles best known for their role in cellular lipid metabolism, also serve as hubs in the H2O2 signaling network. We first briefly introduce the basic concepts of how H2O2 can drive cellular signaling events. Next, we outline the peroxisomal enzyme systems involved in H2O2 metabolism in mammals and reflect on how this oxidant can permeate across the organellar membrane. In addition, we provide an up-to-date overview of molecular targets and biological processes that can be affected by changes in peroxisomal H2O2 metabolism. Where possible, emphasis is placed on the molecular mechanisms and factors involved. From the data presented, it is clear that there are still numerous gaps in our knowledge. Therefore, gaining more insight into how peroxisomes are integrated in the cellular H2O2 signaling network is of key importance to unravel the precise role of peroxisomal H2O2 production and scavenging in normal and pathological conditions.


Assuntos
Suscetibilidade a Doenças , Homeostase , Peróxido de Hidrogênio/metabolismo , Peroxissomos/metabolismo , Transdução de Sinais , Animais , Transporte Biológico , Permeabilidade da Membrana Celular , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
9.
Biochim Biophys Acta Biomembr ; 1861(10): 182991, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31129117

RESUMO

Peroxisomes have the intrinsic ability to produce and scavenge hydrogen peroxide (H2O2), a diffusible second messenger that controls diverse cellular processes by modulating protein activity through cysteine oxidation. Current evidence indicates that H2O2, a molecule whose physicochemical properties are similar to those of water, traverses cellular membranes through specific aquaporin channels, called peroxiporins. Until now, no peroxiporin-like proteins have been identified in the peroxisomal membrane, and it is widely assumed that small molecules such as H2O2 can freely permeate this membrane through PXMP2, a non-selective pore-forming protein with an upper molecular size limit of 300-600 Da. By employing the CRISPR-Cas9 technology in combination with a Flp-In T-REx 293 cell line that can be used to selectively generate H2O2 inside peroxisomes in a controlled manner, we provide evidence that PXMP2 is not essential for H2O2 permeation across the peroxisomal membrane, neither in control cells nor in cells lacking PEX11B, a peroxisomal membrane-shaping protein whose yeast homologue facilitates the permeation of molecules up to 400 Da. During the course of this study, we unexpectedly noted that inactivation of PEX11B leads to partial localization of both peroxisomal membrane and matrix proteins to mitochondria and a decrease in peroxisome density. These findings are discussed in terms of the formation of a functional peroxisomal matrix protein import machinery in the outer mitochondrial membrane.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Transporte Proteico
10.
Antioxid Redox Signal ; 30(1): 95-112, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29433327

RESUMO

SIGNIFICANCE: Peroxisomes are organelles that are best known for their role in cellular lipid and hydrogen peroxide (H2O2) metabolism. Emerging evidence suggests that these organelles serve as guardians and modulators of cellular redox balance, and that alterations in their redox metabolism may contribute to aging and the development of chronic diseases such as neurodegeneration, diabetes, and cancer. Recent Advances: H2O2 is an important signaling messenger that controls many cellular processes by modulating protein activity through cysteine oxidation. Somewhat surprisingly, the potential involvement of peroxisomes in H2O2-mediated signaling processes has been overlooked for a long time. However, recent advances in the development of live-cell approaches to monitor and modulate spatiotemporal fluxes in redox species at the subcellular level have opened up new avenues for research in redox biology and boosted interest in the concept of peroxisomes as redox signaling platforms. CRITICAL ISSUES: This review first introduces the reader to what is known about the role of peroxisomes in cellular H2O2 production and clearance, with a focus on mammalian cells. Next, it briefly describes the benefits and drawbacks of current strategies used to investigate the complex interplay between peroxisome metabolism and cellular redox state. Furthermore, it integrates and critically evaluates literature dealing with the interrelationship between peroxisomal redox metabolism, cell signaling, and human disease. FUTURE DIRECTIONS: As the precise molecular mechanisms underlying many of these associations are still poorly understood, a key focus for future research should be the identification of primary targets for peroxisome-derived H2O2.


Assuntos
Peroxissomos/metabolismo , Transdução de Sinais , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução , Estresse Oxidativo
11.
Antioxid Redox Signal ; 30(1): 22-39, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28594286

RESUMO

AIMS: Peroxisomes are ubiquitous, single-membrane-bounded organelles that contain considerable amounts of enzymes involved in the production or breakdown of hydrogen peroxide (H2O2), a key signaling molecule in multiple biological processes and disease states. Despite this, the role of this organelle in cross-compartmental H2O2 signaling remains largely unclear, mainly because of the difficulty to modulate peroxisomal H2O2 production in a selective manner. This study aimed at establishing and validating a cellular model suitable to decipher the complex signaling processes associated with peroxisomal H2O2 release. RESULTS: Here, we report the development of a human cell line that can be used to selectively generate H2O2 inside peroxisomes in a time- and dose-controlled manner. In addition, we provide evidence that peroxisome-derived H2O2 can oxidize redox-sensitive cysteine residues in multiple proteins within (e.g., peroxiredoxin-5 [PRDX5]) and outside (e.g., nuclear factor kappa B subunit 1 [NFKB1] and subunit RELA proto-oncogene [RELA], phosphatase and tensin homolog [PTEN], forkhead box O3 [FOXO3], and peroxin 5 [PEX5]) the peroxisomal compartment. Furthermore, we show that the extent of protein oxidation depends on the subcellular location of the target protein and is inversely correlated to catalase activity and cellular glutathione content. Finally, we demonstrate that excessive H2O2 production inside peroxisomes does not induce their selective degradation, at least not under the conditions examined. INNOVATION: This study describes for the first time a powerful model system that can be used to examine the role of peroxisome-derived H2O2 in redox-regulated (patho)physiological processes, a research area in need of further investigation and innovative approaches. CONCLUSION: Our results provide unambiguous evidence that peroxisomes can serve as regulatory hubs in thiol-based signaling networks.


Assuntos
Modelos Biológicos , Peroxissomos/metabolismo , Compostos de Sulfidrila/metabolismo , Células Cultivadas , Proteína Forkhead Box O3/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Oxirredução , Peroxirredoxinas/metabolismo , Receptor 1 de Sinal de Orientação para Peroxissomos/metabolismo , Proto-Oncogene Mas , Fator de Transcrição RelA/metabolismo
12.
FEBS J ; 286(1): 205-222, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414318

RESUMO

PEX13 and PEX14 are two core components of the so-called peroxisomal docking/translocation module, the transmembrane hydrophilic channel through which newly synthesized peroxisomal proteins are translocated into the organelle matrix. The two proteins interact with each other and with PEX5, the peroxisomal matrix protein shuttling receptor, through relatively well characterized domains. However, the topologies of these membrane proteins are still poorly defined. Here, we subjected proteoliposomes containing PEX13 or PEX14 and purified rat liver peroxisomes to protease-protection assays and analyzed the protected protein fragments by mass spectrometry, Edman degradation and western blotting using antibodies directed to specific domains of the proteins. Our results indicate that PEX14 is a bona fide intrinsic membrane protein with a Nin -Cout topology, and that PEX13 adopts a Nout -Cin topology, thus exposing its carboxy-terminal Src homology 3 [SH3] domain into the organelle matrix. These results reconcile several enigmatic findings previously reported on PEX13 and PEX14 and provide new insights into the organization of the peroxisomal protein import machinery. ENZYMES: Trypsin, EC3.4.21.4; Proteinase K, EC3.4.21.64; Tobacco etch virus protease, EC3.4.22.44.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Animais , Lipossomos/metabolismo , Masculino , Proteínas de Membrana/genética , Transporte Proteico , Ratos , Ratos Wistar , Proteínas Recombinantes/genética , Proteínas Repressoras/genética
13.
Subcell Biochem ; 89: 435-461, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30378035

RESUMO

Disturbances in cellular redox balance have been associated with pro-aging mechanisms and increased risk for various chronic disease states. Multiple lines of evidence indicate that peroxisomes are central players in cellular redox metabolism. Nevertheless, the potential role of this organelle as intracellular redox signaling platform has been largely overlooked for a long time. Fortunately, this situation is now changing. This review provides a snapshot of the current progress in the field, with an emphasis on the situation in mammals. We first briefly introduce the basics of redox biology and how reactive oxygen and nitrogen species can drive cellular signaling events. Next, we discuss current evidence linking peroxisome (dys)function to redox signaling, both in health and disease. We also highlight what is currently known about the downstream targets of peroxisome-derived oxidants. In addition, we present an extensive list of proteins that are involved in peroxisome functioning and have been identified as being responsive to oxidative stress in large scale redox proteomics studies. Finally, we address how changes in peroxisomal redox state may impact on functional mechanisms underlying inter-organelle communication. Gaining more insight into these mechanisms is key to our understanding of how peroxisomes are embedded in cellular signaling networks implicated in aging and diseases such as cancer, diabetes, and neurodegenerative disorders.


Assuntos
Antioxidantes/metabolismo , Oxidantes/metabolismo , Peroxissomos/metabolismo , Envelhecimento/metabolismo , Animais , Doença , Humanos , Oxirredução , Estresse Oxidativo
14.
Autophagy ; 11(8): 1326-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086376

RESUMO

Peroxisomes are ubiquitous cell organelles essential for human health. To maintain a healthy cellular environment, dysfunctional and superfluous peroxisomes need to be selectively removed. Although emerging evidence suggests that peroxisomes are mainly degraded by pexophagy, little is known about the triggers and molecular mechanisms underlying this process in mammalian cells. In this study, we show that PEX5 proteins fused to a bulky C-terminal tag trigger peroxisome degradation in SV40 large T antigen-transformed mouse embryonic fibroblasts. In addition, we provide evidence that this process is autophagy-dependent and requires monoubiquitination of the N-terminal cysteine residue that marks PEX5 for recycling. As our findings also demonstrate that the addition of a bulky tag to the C terminus of PEX5 does not interfere with PEX5 monoubiquitination but strongly inhibits its export from the peroxisomal membrane, we hypothesize that such a tag mimics a cargo protein that cannot be released from PEX5, thus keeping monoubiquitinated PEX5 at the membrane for a sufficiently long time to be recognized by the autophagic machinery. This in turn suggests that monoubiquitination of the N-terminal cysteine of peroxisome-associated PEX5 not only functions to recycle the peroxin back to the cytosol, but also serves as a quality control mechanism to eliminate peroxisomes with a defective protein import machinery.


Assuntos
Antígenos Transformantes de Poliomavirus/química , Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Ubiquitinação , Animais , Autofagia , Cisteína/química , Citosol/metabolismo , DNA/análise , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Camundongos , Receptor 1 de Sinal de Orientação para Peroxissomos , Fenótipo , Estrutura Terciária de Proteína , Transporte Proteico , Ratos , Receptores Citoplasmáticos e Nucleares/metabolismo
15.
Biochim Biophys Acta ; 1853(2): 285-98, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450972

RESUMO

The tight interrelationship between peroxisomes and mitochondria is illustrated by their cooperation in lipid metabolism, antiviral innate immunity and shared use of proteins executing organellar fission. In addition, we previously reported that disruption of peroxisome biogenesis in hepatocytes severely impacts on mitochondrial integrity, primarily damaging the inner membrane. Here we investigated the molecular impairments of the dysfunctional mitochondria in hepatocyte selective Pex5 knockout mice. First, by using blue native electrophoresis and in-gel activity stainings we showed that the respiratory complexes were differentially affected with reduction of complexes I and III and incomplete assembly of complex V, whereas complexes II and IV were normally active. This resulted in impaired oxygen consumption in cultured Pex5(-/-) hepatocytes. Second, mitochondrial DNA was depleted causing an imbalance in the expression of mitochondrial- and nuclear-encoded subunits of the respiratory chain complexes. Third, mitochondrial membranes showed increased permeability and fluidity despite reduced content of the polyunsaturated fatty acid docosahexaenoic acid. Fourth, the affected mitochondria in peroxisome deficient hepatocytes displayed increased oxidative stress. Acute deletion of PEX5 in vivo using adeno-Cre virus phenocopied these effects, indicating that mitochondrial perturbations closely follow the loss of functional peroxisomes in time. Likely to compensate for the functional impairments, the volume of the mitochondrial compartment was increased several folds. This was not driven by PGC-1α but mediated by activation of PPARα, possibly through c-myc overexpression. In conclusion, loss of peroxisomal metabolism in hepatocytes perturbs the mitochondrial inner membrane, depletes mitochondrial DNA and causes mitochondrial biogenesis independent of PGC-1α.


Assuntos
DNA Mitocondrial/metabolismo , Hepatócitos/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Compartimento Celular , Proliferação de Células , Respiração Celular , Transporte de Elétrons , Deleção de Genes , Hepatócitos/ultraestrutura , Lipídeos/química , Fluidez de Membrana , Camundongos Knockout , Mitocôndrias/ultraestrutura , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo , PPAR alfa/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptor 1 de Sinal de Orientação para Peroxissomos , Subunidades Proteicas/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/metabolismo
16.
Traffic ; 15(1): 94-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24118911

RESUMO

Peroxisome maintenance depends on the import of nuclear-encoded proteins from the cytosol. The vast majority of these proteins is destined for the peroxisomal lumen and contains a C-terminal peroxisomal targeting signal, called PTS1. This targeting signal is recognized in the cytosol by the receptor PEX5. After docking at the peroxisomal membrane and release of the cargo into the organelle matrix, PEX5 is recycled to the cytosol through a process requiring monoubiquitination of an N-terminal, cytosolically exposed cysteine residue (Cys11 in the human protein). At present, the reason why a cysteine, and not a lysine residue, is the target of ubiquitination remains unclear. Here, we provide evidence that PTS1 protein import into human fibroblasts is a redox-sensitive process. We also demonstrate that Cys11 in human PEX5 functions as a redox switch that regulates PEX5 activity in response to intracellular oxidative stress. Finally, we show that exposure of human PEX5 to oxidized glutathione results in a ubiquitination-deficient PEX5 molecule, and that substitution of Cys11 by a lysine can counteract this effect. In summary, these findings reveal that the activity of PEX5, and hence PTS1 import, is controlled by the redox state of the cytosol. The potential physiological implications of these findings are discussed.


Assuntos
Estresse Oxidativo , Peroxissomos/metabolismo , Sinais Direcionadores de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Linhagem Celular , Cisteína/genética , Cisteína/metabolismo , Citosol/metabolismo , Glutationa/metabolismo , Humanos , Oxirredução , Receptor 1 de Sinal de Orientação para Peroxissomos , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinação
17.
Biochimie ; 98: 56-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23933092

RESUMO

Peroxisomes are ubiquitous and multifunctional organelles that are primarily known for their role in cellular lipid metabolism. As many peroxisomal enzymes catalyze redox reactions as part of their normal function, these organelles are also increasingly recognized as potential regulators of oxidative stress-related signaling pathways. This in turn suggests that peroxisome dysfunction is not only associated with rare inborn errors of peroxisomal metabolism, but also with more common age-related diseases such as neurodegeneration, type 2 diabetes, and cancer. This review intends to provide a comprehensive picture of the complex role of mammalian peroxisomes in cellular redox metabolism. We highlight how peroxisomal metabolism may contribute to the bioavailability of important mediators of oxidative stress, with particular emphasis on reactive oxygen species. In addition, we review the biological properties of peroxisome-derived signaling messengers and discuss how these molecules may mediate various biological responses. Furthermore, we explore the emerging concepts that peroxisomes and mitochondria share an intricate redox-sensitive relationship and cooperate in cell fate decisions. This is particularly relevant to the observed demise of peroxisome function which accompanies cellular senescence, organismal aging, and age-related diseases.


Assuntos
Estresse Oxidativo/fisiologia , Peroxissomos/metabolismo , Envelhecimento/metabolismo , Animais , Senescência Celular , Humanos , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais
18.
Subcell Biochem ; 69: 45-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23821142

RESUMO

Human aging is considered as one of the biggest risk factors for the development of multiple diseases such as cancer, type-2 diabetes, and neurodegeneration. In addition, it is widely accepted that these age-related diseases result from a combination of various genetic, lifestyle, and environmental factors. As biological aging is a complex and multifactorial phenomenon, the molecular mechanisms underlying disease initiation and progression are not yet fully understood. However, a significant amount of evidence supports the theory that oxidative stress may act as a primary etiologic factor. Indeed, many signaling components like kinases, phosphatases, and transcription factors are exquisitely sensitive to the cellular redox status, and a chronic or severe disturbance in redox homeostasis can promote cell proliferation or trigger cell death. Now, almost 50 years after their discovery, there is a wealth of evidence that peroxisomes can function as a subcellular source, sink, or target of reactive oxygen and nitrogen molecules. Yet, the possibility that these organelles may act as a signaling platform for a variety of age-related processes has so far been underestimated and largely neglected. In this review, we will critically discuss the possible role of peroxisomes in the human aging process in light of the available data.


Assuntos
Envelhecimento/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Peroxissomos/metabolismo , Fatores Etários , Envelhecimento/patologia , Animais , Diabetes Mellitus Tipo 2/patologia , Humanos , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Oxirredução , Peroxissomos/patologia , Transdução de Sinais
19.
J Biol Chem ; 287(16): 12815-27, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22371489

RESUMO

Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation machinery. PEX5 is then monoubiquitinated at a conserved cysteine residue and extracted back into the cytosol in an ATP-dependent manner. We have previously shown that the ubiquitin-PEX5 thioester conjugate (Ub-PEX5) released into the cytosol can be efficiently disrupted by physiological concentrations of glutathione, raising the possibility that a fraction of Ub-PEX5 is nonenzymatically deubiquitinated in vivo. However, data suggesting that Ub-PEX5 is also a target of a deubiquitinase were also obtained in that work. Here, we used an unbiased biochemical approach to identify this enzyme. Our results suggest that ubiquitin-specific protease 9X (USP9X) is by far the most active deubiquitinase acting on Ub-PEX5, both in female rat liver and HeLa cells. We also show that USP9X is an elongated monomeric protein with the capacity to hydrolyze thioester, isopeptide, and peptide bonds. The strategy described here will be useful in identifying deubiquitinases acting on other ubiquitin conjugates.


Assuntos
Peroxissomos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina/metabolismo , Animais , Citosol/enzimologia , Ativação Enzimática/fisiologia , Ésteres/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Hidrólise , Fígado/enzimologia , Masculino , Receptor 1 de Sinal de Orientação para Peroxissomos , Coelhos , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/isolamento & purificação , Especificidade por Substrato/fisiologia , Ubiquitina Tiolesterase/isolamento & purificação
20.
Biochim Biophys Acta ; 1793(11): 1669-75, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19715730

RESUMO

According to current models, most newly synthesized peroxisomal intrinsic membrane proteins are recognized in the cytosol and targeted to the peroxisomal membrane by PEX19. At the organelle membrane the PEX19-cargo protein complex interacts with PEX3, a protein believed to possess only one transmembrane domain and exposing the majority of its polypeptide chain into the cytosol. In agreement with this topological model, a recombinant protein comprising the cytosolic domain of PEX3 can be purified in a soluble and monomeric form in the absence of detergents or other solubilizing agents. Here, we show that this recombinant protein actually precipitates when incubated with mild detergents, suggesting that this domain of PEX3 interacts with amphipathic molecules. Following this observation, we tested this recombinant protein in lipid-binding assays and found that it interacts strongly with liposomes inducing their flocculation or even partial solubilization. The implications of these findings are discussed.


Assuntos
Lipoproteínas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Modelos Biológicos , Peroxissomos/metabolismo , Transporte Biológico/fisiologia , Humanos , Lipoproteínas/química , Lipoproteínas/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peroxinas , Peroxissomos/química , Peroxissomos/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA