Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 23(1): 242, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987789

RESUMO

Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Hipoglicemiantes , Incretinas , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacologia , Animais , Resultado do Tratamento , Incretinas/uso terapêutico , Incretinas/efeitos adversos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/efeitos adversos , Biomarcadores/sangue , Medição de Risco , Receptor do Peptídeo Semelhante ao Glucagon 2 , Polipeptídeo Inibidor Gástrico
2.
Cardiovasc Diabetol ; 23(1): 112, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555463

RESUMO

BACKGROUND: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are effective antidiabetic drugs with potential cardiovascular benefits. Despite their well-established role in reducing the risk of major adverse cardiovascular events (MACE), their impact on heart failure (HF) remains unclear. Therefore, our study examined the cardioprotective effects of tirzepatide (TZT), a novel glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) receptor agonist. METHODS: A three-steps approach was designed: (i) Meta-analysis investigation with the primary objective of assessing major adverse cardiovascular events (MACE) occurrence from major randomized clinical trials.; (ii) TZT effects on a human cardiac AC16 cell line exposed to normal (5 mM) and high (33 mM) glucose concentrations for 7 days. The gene expression and protein levels of primary markers related to cardiac fibrosis, hypertrophy, and calcium modulation were evaluated. (iii) In silico data from bioinformatic analyses for generating an interaction map that delineates the potential mechanism of action of TZT. RESULTS: Meta-analysis showed a reduced risk for MACE events by TZT therapy (HR was 0.59 (95% CI 0.40-0.79, Heterogeneity: r2 = 0.01, I2 = 23.45%, H2 = 1.31). In the human AC16 cardiac cell line treatment with 100 nM TZT contrasted high glucose (HG) levels increase in the expression of markers associated with fibrosis, hypertrophy, and cell death (p < 0.05 for all investigated markers). Bioinformatics analysis confirmed the interaction between the analyzed markers and the associated pathways found in AC16 cells by which TZT affects apoptosis, fibrosis, and contractility, thus reducing the risk of heart failure. CONCLUSION: Our findings indicate that TZT has beneficial effects on cardiac cells by positively modulating cardiomyocyte death, fibrosis, and hypertrophy in the presence of high glucose concentrations. This suggests that TZT may reduce the risk of diabetes-related cardiac damage, highlighting its potential as a therapeutic option for heart failure management clinical trials. Our study strongly supports the rationale behind the clinical trials currently underway, the results of which will be further investigated to gain insights into the cardiovascular safety and efficacy of TZT.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 2 , Insuficiência Cardíaca , Humanos , Insuficiência Cardíaca/prevenção & controle , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamento farmacológico , Hipertrofia , Hipoglicemiantes/farmacologia , Miócitos Cardíacos , Fibrose , Glucose , Receptor do Peptídeo Semelhante ao Glucagon 1
3.
Eur J Heart Fail ; 26(2): 471-482, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38247224

RESUMO

AIM: Cardiac remodelling plays a major role in the prognosis of patients with aortic stenosis (AS) and could impact the benefits of aortic valve replacement. Our study aimed to evaluate the expression of sodium-glucose cotransporter 2 (SGLT2) gene and protein in patients with severe AS stratified in high gradient (HG) and low flow-low gradient (LF-LG) AS and its association with cardiac functional impairments. METHODS AND RESULTS: Gene expression and protein levels of main biomarkers of cardiac fibrosis (galectin-3, sST2, serpin-4, procollagen type I amino-terminal peptide, procollagen type I carboxy-terminal propeptide, collagen, transforming growth factor [TGF]-ß), inflammation (growth differentiation factor-15, interleukin-6, nuclear factor-κB [NF-κB]), oxidative stress (superoxide dismutase 1 [SOD1] and 2 [SOD2]), and cardiac metabolism (sodium-hydrogen exchanger, peroxisome proliferator-activated receptor [PPAR]-α, PPAR-γ, glucose transporter 1 [GLUT1] and 4 [GLUT4]) were evaluated in blood samples and heart biopsies of 45 patients with AS. Our study showed SGLT2 gene and protein hyper-expression in patients with LF-LG AS, compared to controls and HG AS (p < 0.05). These differences remained significant even after adjusting for age, gender, body mass index, history of diabetes mellitus, arterial hypertension, and coronary artery disease. SGLT2 gene expression was positively correlated with: (i) TGF-ß (r = 0.72, p < 0.001) and collagen (r = 0.73, p < 0.001) as markers of fibrosis; (ii) NF-κB (r = 0.36, p < 0.01) and myocardial interleukin-6 (r = 0.68, p < 0.001) as markers of inflammation: (iii) SOD2 (r = -0.38, p < 0.006) as a marker of oxidative stress; (iv) GLUT4 (r = 0.33, p < 0.02) and PPAR-α (r = 0.36, p < 0.01) as markers of cardiac metabolism. CONCLUSION: In patients with LF-LG AS, SGLT2 gene and protein were hyper-expressed in cardiomyocytes and associated with myocardial fibrosis, inflammation, and oxidative stress.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Humanos , Estenose da Valva Aórtica/complicações , Fibrose , Glucose , Insuficiência Cardíaca/complicações , Inflamação , Interleucina-6 , NF-kappa B , Receptores Ativados por Proliferador de Peroxissomo , Sódio , Transportador 2 de Glucose-Sódio , Remodelação Ventricular
4.
J Transl Med ; 22(1): 114, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287296

RESUMO

BACKGROUND: Several evidence demonstrated that glucagon-like peptide 1 receptor agonists (GLP1-RAs) reduce the risk of dementia in type 2 diabetes patients by improving memory, learning, and overcoming cognitive impairment. In this study, we elucidated the molecular processes underlying the protective effect of Tirzepatide (TIR), a dual glucose-dependent insulinotropic polypeptide receptor agonist (GIP-RA)/ GLP-1RA, against learning and memory disorders. METHODS: We investigated the effects of TIR on markers of neuronal growth (CREB and BDNF), apoptosis (BAX/Bcl2 ratio) differentiation (pAkt, MAP2, GAP43, and AGBL4), and insulin resistance (GLUT1, GLUT4, GLUT3 and SORBS1) in a neuroblastoma cell line (SHSY5Y) exposed to normal and high glucose concentration. The potential role on DNA methylation of genes involved in neuroprotection and epigenetic modulators of neuronal growth (miRNA 34a), apoptosis (miRNA 212), and differentiation (miRNA 29c) was also investigated. The cell proliferation was detected by measuring Ki-67 through flow cytometry. The data were analysed by SPSS IBM Version 23 or GraphPad Prism 7.0 software and expressed as the means ± SEM. Differences between the mean values were considered significant at a p-value of < 0.05. GraphPad Prism software was used for drawing figures. RESULTS: For the first time, it was highlighted: (a) the role of TIR in the activation of the pAkt/CREB/BDNF pathway and the downstream signaling cascade; (b) TIR efficacy in neuroprotection; (c) TIR counteracting of hyperglycemia and insulin resistance-related effects at the neuronal level. CONCLUSIONS: We demonstrated that TIR can ameliorate high glucose-induced neurodegeneration and overcome neuronal insulin resistance. Thus, this study provides new insight into the potential role of TIR in improving diabetes-related neuropathy.


Assuntos
Diabetes Mellitus Tipo 2 , Polipeptídeo Inibidor Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 2 , Resistência à Insulina , MicroRNAs , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Glicemia/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA