Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 265: 116097, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157595

RESUMO

Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails. Previously, the des-acyl analog of TriA1 (termed H-TriA1) was found to possess very weak antibacterial activity, albeit it potentiated the effect of several antibiotics. In the present study, two series of des-acyl tridecaptins were explored with the aim of improving the direct antibacterial effect. At the same time, overall physico-chemical properties were modulated by amino acid substitution(s) to diminish the risk of undesired levels of hemolysis and to avoid an impairment of mammalian cell viability, since these properties are typically associated with highly hydrophobic cationic peptides. Microbiology and biophysics tools were used to determine bacterial uptake, while circular dichroism and isothermal calorimetry were used to probe the mode of action. Several analogs had improved antibacterial activity (as compared to that of H-TriA1) against Enterobacteriaceae. Optimization enabled identification of the lead compound 29 that showed a good ADMET profile as well as in vivo efficacy in a variety of mouse models of infection.


Assuntos
Antibacterianos , Bactérias , Peptídeos , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Ácidos Graxos/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Mamíferos , Testes de Sensibilidade Microbiana , Cátions/química
2.
Eur J Pharm Biopharm ; 189: 84-97, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37059402

RESUMO

The ability to induce antigen-specific CD4+ and CD8+T-cell responses is one of the fundamental requirements when developing new efficacious vaccines against challenging infectious diseases and cancer. However, no adjuvants are currently approved for human subunit vaccines that induce T-cell immunity. Here, we incorporated a Toll-like receptor 4 agonist, i.e., the ionizable lipidoid L5N12, in the liposomal cationic adjuvant formulation 09 (CAF®09), and found that modified CAF®09 liposomes possess preserved adjuvant function as compared to unmodified CAF®09. CAF®09 consists of the cationic lipid dimethyldioctadecylammonium (DDA), monomycoloyl glycerol analogue 1 (MMG-1), and polyinosinic:polycytidylic acid [poly(I:C)]. By using the microfluidic mixing technology for liposome preparation, we gradually replaced DDA with L5N12, while keeping the molar ratios of MMG-1 and poly(I:C) constant. We found that this type of modification resulted in colloidally stable liposomes, which were significantly smaller and displayed reduced surface charge as compared to unmodified CAF®09, prepared by using the conventional thin film method. We showed that incorporation of L5N12 decreases the membrane rigidity of CAF®09 liposomes. Furthermore, vaccination with antigen adjuvanted with L5N12-modified CAF®09 or antigen adjuvanted with unmodified CAF®09, respectively, induced comparable antigen-specific serum antibody titers. We found that antigen adjuvanted with L5N12-modified CAF®09 induced antigen-specific effector and memory CD4+ and CD8+T-cell responses in the spleen comparable to those induced when unmodified CAF®09 was used as adjuvant. However, incorporating L5N12 did not have a synergistic immunopotentiating effect on the antibody and T-cell responses induced by CAF®09. Moreover, vaccination with antigen adjuvanted with unmodified CAF®09, which was manufactured by using microfluidic mixing, induced significantly lower antigen-specific CD4+ and CD8+T-cell responses than vaccination with antigen adjuvanted with unmodified CAF®09, which was prepared by using the thin film method. These results show that the method of manufacturing affects CAF®09 liposome adjuvanted antigen-specific immune responses, which should be taken into consideration when evaluating immunogenicity of subunit protein vaccines.


Assuntos
Adjuvantes Imunológicos , Lipossomos , Humanos , Adjuvantes Imunológicos/farmacologia , Poli I-C , Antígenos , Adjuvantes Farmacêuticos , Vacinas de Subunidades Antigênicas , Imunidade
3.
Int J Pharm ; 621: 121758, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483619

RESUMO

Thermostable dry powder inhaler (DPI) formulations with high aerosol performance are attractive inhalable solid dosage forms for local treatment of inflammatory lung diseases. We recently demonstrated that lipidoid-polymer hybrid nanoparticles (LPNs) loaded with small interfering RNA (siRNA) directed against tumor necrosis factor alpha (TNF-α) mediate efficient intracellular siRNA delivery and reduce inflammation in vivo. Here, we show that mixtures of the stabilizing excipients trehalose (Tre) and dextran (Dex), in combination with the shell-forming dispersion enhancer leucine (Leu), stabilize TNF-α siRNA-loaded LPNs during spray drying into nanocomposite microparticles, and result in DPI formulations with high aerosol performance. At low Leu content (0 to 10%, w/w), the DPI formulations were amorphous, and exhibited poor aerosol performance. When the Leu content was increased from 20 to 60% (w/w), the surface content of Leu increased from 39.2 to 68.1 mol%, and the flowability was significantly improved. Microscopy analysis suggest that the improved powder dispersibility is the result of a wrinkled surface morphology, which reduces the surface area available for interparticle interactions. Increasing the Leu content further (to above 10%, w/w) did not influence the aerosol performance, and the aerosol yield was maximal at 30-40% Leu (w/w). Formulations containing 40% Leu and a Tre:Dex ratio of 10:90 (w/w) displayed a high fine particle fraction and aerosol properties suitable for inhalation. The chemical integrity of TNF-α siRNA was preserved in the solid state, and biodistribution studies in mice showed that pulmonary administration of DPI formulations with high aerosol performance resulted in homogenous deep lung deposition. Our results demonstrate that at optimal ratios, ternary excipient mixtures of Leu, Tre and Dex protect TNF-α siRNA-loaded LPNs during spray drying. Hence, this study shows that microparticles with an amorphous Tre/Dex matrix and a crystalline Leu shell efficiently stabilize the nanocomposite LPNs in the solid state, and ensure aerosol properties suitable for inhalation.


Assuntos
Inaladores de Pó Seco , Nanopartículas , Administração por Inalação , Aerossóis , Animais , Excipientes/química , Leucina/química , Camundongos , Nanopartículas/química , Tamanho da Partícula , Pós , RNA Interferente Pequeno , Distribuição Tecidual , Trealose , Fator de Necrose Tumoral alfa
4.
J Immunol ; 208(7): 1632-1641, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321878

RESUMO

Highly pathogenic Staphylococcus aureus strains produce phenol-soluble modulins (PSMs), which are N-formylated peptides. Nanomolar concentrations of PSMα2 are recognized by formyl peptide receptor 2 (FPR2), but unlike the prototypic FPR2 agonist WKYMVM, PSMα2 is a biased signaling agonist. The truncated N-terminal PSMα2 variant, consisting of the five N-terminal residues, is no longer recognized by FPR2, showing that the C-terminal part of PSMα2 confers FPR2 selectivity, whereas the N-terminal part may interact with the FPR1 binding site. In the current study, a combined pharmacological and genetic approach involving primary human neutrophils and engineered FPR knock-in and knockout cells was used to gain molecular insights into FPR1 and FPR2 recognition of formyl peptides as well as the receptor downstream signaling induced by these peptides. In comparison with the full-length PSMα2, we show that the peptide in which the N-terminal part of PSMα2 was replaced by fMet-Ile-Phe-Leu (an FPR1-selective peptide agonist) potently activates both FPRs for production of superoxide anions and ß-arrestin recruitment. A shortened analog of PSMα2 (PSMα21-12), lacking the nine C-terminal residues, activated both FPR1 and FPR2 to produce reactive oxygen species, whereas ß-arrestin recruitment was only mediated through FPR1. However, a single amino acid replacement (Gly-2 to Ile-2) in PSMα21-12 was sufficient to alter FPR2 signaling to include ß-arrestin recruitment, highlighting a key role of Gly-2 in conferring FPR2-biased signaling. In conclusion, we provide structural insights into FPR1 and FPR2 recognition as well as the signaling induced by interaction with formyl peptides derived from PSMα2, originating from S. aureus bacteria.


Assuntos
Receptores de Formil Peptídeo , Staphylococcus aureus , Toxinas Bacterianas , Humanos , Neutrófilos/metabolismo , Peptídeos/metabolismo , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/química , Staphylococcus aureus/metabolismo
5.
J Org Chem ; 86(21): 14371-14380, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34661410

RESUMO

Several guanidines and guanidinylated peptides have substantial potential as therapeutics, but efficient guanidinylation reagents are vital for easy access to these compounds. Presently, pyrazole-1-carboxamidine type reagents are commonly used in the transformations of amines into corresponding guanidines. Here, we report a comparative study of the utility of 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine, which was synthesized in two steps and readily upscaled to gram amounts. It exhibited excellent performance in solution-phase reactions, rapidly converting a set of representative aliphatic primary and unhindered secondary amines as well as aniline into the corresponding bis(tert-butoxycarbonyl)-protected guanidines. To enable a direct assessment of the reactivity of guanidinylation reagents, conversions were performed in deuterated solvents (d7-DMF or d8-THF), allowing for continuous analysis of the reaction mixtures by 1H and 13C NMR. Likewise, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine proved to be a versatile reagent in solid-phase conversions, for example, a resin-bound test peptide (KFFKFFK) was fully guanidinylated in only 2 h by using 2 equivalents of the reagent per free amino group. Also, 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine proved capable of completely guanidinylating more sterically hindered N-terminal residues (e.g., N-methyl amino acids or a peptoid) in resin-bound peptides. Its superior reactivity and stability demonstrated under heating conditions make 1H-triazole-1-[N,N'-bis(tert-butoxycarbonyl)]carboxamidine a valuable guanidinylation reagent both in solution- and solid-phase synthesis.


Assuntos
Técnicas de Síntese em Fase Sólida , Triazóis , Aminas , Aminoácidos , Peptídeos
6.
Biomolecules ; 11(10)2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680166

RESUMO

Multidrug resistance (MDR) is a major challenge in cancer treatment, and the breast cancer resistance protein (BCRP) is an important target in the search for new MDR-reversing drugs. With the aim of discovering new potential BCRP inhibitors, the crude extract of leaves of Eremophila galeata, a plant endemic to Australia, was investigated for inhibitory activity of parental (HT29par) as well as BCRP-overexpressing HT29 colon cancer cells resistant to the chemotherapeutic SN-38 (i.e., HT29SN38 cells). This identified a fraction, eluted with 40% acetonitrile on a solid-phase extraction column, which showed weak growth-inhibitory activity on HT29SN38 cells when administered alone, but exhibited concentration-dependent growth inhibition when administered in combination with SN-38. The major constituent in this fraction was isolated and found to be 5,3',5'-trihydroxy-3,6,7,4'-tetramethoxyflavone (2), which at a concentration of 25 µg/mL potentiated the growth-inhibitory activity of SN-38 to a degree comparable to that of the known BCRP inhibitor Ko143 at 1 µM. A dye accumulation experiment suggested that 2 inhibits BCRP, and docking studies showed that 2 binds to the same BCRP site as SN-38. These results indicate that 2 acts synergistically with SN-38, with 2 being a BCRP efflux pump inhibitor while SN-38 inhibits topoisomerase-1.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Neoplasias do Colo/tratamento farmacológico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Eremophila (Planta)/química , Flavonoides/farmacologia , Proteínas de Neoplasias/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Flavonoides/química , Flavonoides/isolamento & purificação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Irinotecano/efeitos adversos , Irinotecano/farmacologia
7.
Amino Acids ; 53(9): 1455-1466, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34410506

RESUMO

Solid-phase synthesis of cyclic, branched or side-chain-modified peptides typically involves introduction of a residue carrying a temporary side-chain protecting group that undergoes selective on-resin removal. In particular, Nα-Fmoc-Nε-(4-methyltriphenylmethyl) (Mtt)-protected lysine and its shorter analogues are commercially available and extensively used in this context. Nevertheless, rapid reliable methods for on-resin removal of Mtt groups in the presence of tert-butyloxycarbonyl (Boc) groups are needed. Current commonly used conditions involve low concentrations (1-3%) of trifluoroacetic acid (TFA) in dichloromethane, albeit adjustment to each specific application is required to avoid premature removal of Boc groups or cleavage from the linker. Hence, a head-to-head comparison of several deprotection conditions was performed. The selected acids represent a wide range of acidity from TFA to trifluoroethanol. Also, on-resin removal of the N-(4-methoxytriphenylmethyl) (Mmt) and O-trityl groups (on serine) was investigated under similar conditions. The mildest conditions identified for Mtt deprotection involve successive treatments with 30% hexafluoroisopropanol (HFIP) or 30% perfluoro-tert-butanol [(CF3)3COH] in dichloromethane (3 × 5 or 3 × 15 min, respectively), while 30% HFIP, 30% (CF3)3COH, or 10% AcOH-20% trifluoroethanol (TFE) in CH2Cl2 (3 × 5 min) as well as 5% trichloroacetic acid in CH2Cl2 (3 × 2 min) enabled Mmt removal. Treatment with 1% TFA with/without 2% triisopropylsilane added (3 × 5 min), but also prolonged treatment with 30% (CF3)3COH (5 × 15 min), led to selective deprotection of an O-Trt group on a serine residue. In all cases, the sequences also contained N-Boc or O-tBu protecting groups, which were not affected by 30% HFIP or 30% (CF3)3COH even after a prolonged reaction time of 4 h. Finally, the optimized conditions involving HFIP or (CF3)3COH proved applicable also for selective deprotection of a longer resin-bound peptide [i.e., Ac-Gly-Leu-Leu-Lys(Mtt)-Arg(Pbf)-Ile-Lys(Boc)-Ser(tBu)-Leu-Leu-RAM-PS] as well as allowed for an almost complete deprotection of a Dab(Mtt) residue.


Assuntos
Peptídeos/síntese química , Resinas Sintéticas/química , Técnicas de Síntese em Fase Sólida/métodos , Ácido Trifluoracético/química , Compostos de Tritil/química , terc-Butil Álcool/química , Estrutura Molecular
8.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208826

RESUMO

PEGylation of antimicrobial peptides as a shielding tool that increases stability toward proteolytic degradation typically leads to concomitant loss of activity, whereas incorporation of ultrashort PEG-like amino acids (sPEGs) remains essentially unexplored. Here, modification of a peptide/ß-peptoid hybrid with sPEGs was examined with respect to influence on hydrophobicity, antibacterial activity and effect on viability of mammalian cells for a set of 18 oligomers. Intriguingly, the degree of sPEG modification did not significantly affect hydrophobicity as measured by retention in reverse-phase HPLC. Antibacterial activity against both wild-type and drug-resistant strains of Escherichia coli and Acinetobacter baumannii (both Gram-negative pathogens) was retained or slightly improved (MICs in the range 2-16 µg/mL equal to 0.7-5.2 µM). All compounds in the series exhibited less than 10% hemolysis at 400 µg/mL. While the number of sPEG moieties appeared not to be clearly correlated with hemolytic activity, a trend toward slightly increased hemolytic activity was observed for analogues displaying the longest sPEGs. In contrast, within a subseries the viability of HepG2 liver cells was least affected by analogues displaying the longer sPEGs (with IC50 values of ~1280 µg/mL) as compared to most other analogues and the parent peptidomimetic (IC50 values in the range 330-800 µg/mL).


Assuntos
Antibacterianos/síntese química , Peptidomiméticos/síntese química , Peptoides/síntese química , Polietilenoglicóis/química , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Hemólise , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Peptoides/química , Peptoides/farmacologia
9.
Molecules ; 26(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673582

RESUMO

Many cancer diseases, e.g., prostate cancer and lung cancer, develop very slowly. Common chemotherapeutics like vincristine, vinblastine and taxol target cancer cells in their proliferating states. In slowly developing cancer diseases only a minor part of the malignant cells will be in a proliferative state, and consequently these drugs will exert a concomitant damage on rapidly proliferating benign tissue as well. A number of toxins possess an ability to kill cells in all states independently of whether they are benign or malignant. Such toxins can only be used as chemotherapeutics if they can be targeted selectively against the tumors. Examples of such toxins are mertansine, calicheamicins and thapsigargins, which all kill cells at low micromolar or nanomolar concentrations. Advanced prodrug concepts enabling targeting of these toxins to cancer tissue comprise antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT), lectin-directed enzyme-activated prodrug therapy (LEAPT), and antibody-drug conjugated therapy (ADC), which will be discussed in the present review. The review also includes recent examples of protease-targeting chimera (PROTAC) for knockdown of receptors essential for development of tumors. In addition, targeting of toxins relying on tumor-overexpressed enzymes with unique substrate specificity will be mentioned.


Assuntos
Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , Peptídeo Hidrolases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Toxinas Biológicas/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Calicheamicinas/farmacologia , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Desenho de Fármacos , Liberação Controlada de Fármacos , Terapia Enzimática , Técnicas de Silenciamento de Genes , Humanos , Masculino , Maitansina/farmacologia , Terapia de Alvo Molecular , Peptídeo Hidrolases/genética , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Tapsigargina/farmacologia , Toxinas Biológicas/farmacologia
10.
ChemMedChem ; 15(24): 2544-2561, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33029927

RESUMO

The influence of hydrophobicity on antibacterial activity versus the effect on the viability of mammalian cells for peptide/peptoid hybrids was examined for oligomers based on the cationic Lys-like peptoid residue combined with each of 28 hydrophobic amino acids in an alternating sequence. Their relative hydrophobicity was correlated to activity against both Gram-negative and Gram-positive species, human red blood cells, and HepG2 cells. This identified hydrophobic side chains that confer potent antibacterial activity (e. g., MICs of 2-8 µg/mL against E. coli) and low toxicity toward mammalian cells (<10 % hemolysis at 400 µg/mL and IC50 >800 µg/mL for HepG2 viability). Most peptidomimetics retained activity against drug-resistant strains. These findings corroborate the hypothesis that for related peptidomimetics two hydrophobicity thresholds may be identified: i) it should exceed a certain level in order to confer antibacterial activity, and ii) there is an upper limit, beyond which cell selectivity is lost. It is envisioned that once identified for a given subclass of peptide-like antibacterials such thresholds can guide further optimisation.


Assuntos
Antibacterianos/farmacologia , Oligopeptídeos/farmacologia , Peptidomiméticos/farmacologia , Peptoides/farmacologia , Antibacterianos/síntese química , Antibacterianos/toxicidade , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Células Hep G2 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Oligopeptídeos/síntese química , Oligopeptídeos/toxicidade , Peptidomiméticos/síntese química , Peptidomiméticos/toxicidade , Peptoides/síntese química , Peptoides/toxicidade
11.
ACS Med Chem Lett ; 11(5): 671-677, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435369

RESUMO

Targeting cytotoxic 4ß-phorbol esters toward cancer tissue was attempted by conjugating a 4ß-pborbol derivative with substrates for the proteases prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) expressed in cancer tissue. The hydrophilic peptide moiety was hypothesized to prevent penetration of the prodrugs into cells and prevent interaction with PKC. Cleavage of the peptide in cancer tumors was envisioned to release lipophilic cytotoxins, which subsequently penetrate into cancer cells. The 4ß-phorbol esters were prepared from 4ß-phorbol isolated from Croton tiglium seeds, while the peptides were prepared by solid-phase synthesis. Cellular assays revealed activation of PKC by the prodrugs and efficient killing of both peptidase positive as well as peptidase negative cells. Consequently no selectivity for enzyme expressing cells was found.

12.
Methods Mol Biol ; 2105: 97-118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32088866

RESUMO

Conjugation of a delivery peptide containing a thiol functionality (e.g., a cysteine residue) with a PNA oligomer displaying a single unprotected aliphatic primary amine (e.g., the N-terminus or a C-terminal lysine residue) can be achieved via a one-pot modification with a bisfunctional maleimide linker also displaying a reactive N-hydroxysuccinimidyl ester group (e.g., Mal-PEG2-OSu). Here, an optimized protocol with respect to ratios between the reactants as well as recommended reaction times is presented. Formation and conversion of the maleimide-PNA intermediate was followed by analytical HPLC as exemplified by its conjugation to (KFF)3K-Cys-NH2. In addition, the reaction time required for direct conversion of a preformed Mal-(CH2)2-(C=O)-PNA oligomer in the presence of a slight excess of thiol-modified peptide (with a varying degree of sterical hindrance: HS-(CH2)2-CONH-(KFF)3K-NH2, (KFF)3K-hCys-NH2 and (KFF)3K-Cys-NH2) is provided.


Assuntos
Substâncias Macromoleculares/síntese química , Maleimidas/química , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Sulfetos/química , Técnicas de Química Sintética , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Compostos de Sulfidrila
13.
Front Bioeng Biotechnol ; 8: 601155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33520957

RESUMO

RNA interference (RNAi) has an unprecedented potential as a therapeutic strategy for reversibly silencing the expression of any gene. Therapeutic delivery of the RNAi mediator, i.e., small interfering RNA (siRNA), can be used to address diseases characterized by gene overexpression, for example inflammatory conditions like chronic obstructive pulmonary disease (COPD). Macrophages play a key role in COPD pathogenesis and are recruited to the airways and lung parenchyma, where they release proinflammatory cytokines, e.g., tumor necrosis factor-alpha (TNF-α). Hence, targeting TNF-α with siRNA is a promising therapeutic approach for COPD management. However, a safe and effective delivery system is required for delivery of TNF-α siRNA into the cytosol of hard-to-transfect macrophages. The purpose of this study was to optimize the intracellular delivery of TNF-α siRNA to the lipopolysaccharide-activated murine macrophage cell line RAW 264.7 using lipidoid-polymer hybrid nanoparticles (LPNs) composed of the lipid-like transfection agent lipidoid 5 (L5) and the biodegradable polymer poly (D,L-lactide-co-glycolide). Applying a quality-by-design approach, the influence of critical formulation variables, i.e., the L5 content and the L5:siRNA ratio (w/w), on critical quality attributes (CQAs) was investigated systematically using risk assessment and design of experiments, followed by delineation of an optimal operating space (OOS). The CQAs were identified based on the quality target product profile and included size, polydispersity index, zeta potential, encapsulation efficiency and loading for achieving efficient and safe TNF-α gene silencing in activated RAW 264.7 cells. Formulations inducing efficient gene silencing and low cytotoxicity were identified, and the optimal formulations displayed L5 contents of 15 and 20% (w/w), respectively, and an L5:siRNA weight ratio of 15:1. All tested formulations within the OOS mediated efficient and sequence-specific TNF-α gene silencing in RAW 264.7 cells at TNF-α-siRNA concentrations, which were significantly lower than the concentrations required of non-encapsulated TNF-α-siRNA, highlighting the benefit of the delivery system. The results also demonstrate that increasing the loading of siRNA into the delivery system does not necessarily imply enhanced gene silencing. This opens new avenues for further exploitation of LPNs as a robust platform technology for delivering TNF-α siRNA to macrophages, e.g., in the management of COPD.

14.
Molecules ; 24(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817108

RESUMO

Previous optimisation studies of peptide/peptoid hybrids typically comprise comparison of structurally related analogues displaying different oligomer length and diverse side chains. The present work concerns a systematically constructed series of 16 closely related 12-mer oligomers with an alternating cationic/hydrophobic design, representing a wide range of hydrophobicity and differences in relative side-chain lengths. The aim was to explore and rationalise the structure-activity relationships within a subclass of oligomers displaying variation of three structural features: (i) cationic side-chain length, (ii) hydrophobic side-chain length, and (iii) type of residue that is of a flexible peptoid nature. Increased side-chain length of cationic residues led to reduced hydrophobicity till the side chains became more extended than the aromatic/hydrophobic side chains, at which point hydrophobicity increased slightly. Evaluation of antibacterial activity revealed that analogues with lowest hydrophobicity exhibited reduced activity against E. coli, while oligomers with the shortest cationic side chains were most potent against P. aeruginosa. Thus, membrane-disruptive interaction with P. aeruginosa appears to be promoted by a hydrophobic surface of the oligomers (comprised of the aromatic groups shielding the cationic side chains). Peptidomimetics with short cationic side chains exhibit increased hemolytic properties as well as give rise to decreased HepG2 (hepatoblastoma G2 cell line) cell viability. An optimal hydrophobicity window could be defined by a threshold of minimal hydrophobicity conferring activity toward E. coli and a threshold for maximal hydrophobicity, beyond which cell selectivity was lost.


Assuntos
Antibacterianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Peptoides/química , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Peptidomiméticos/síntese química , Peptidomiméticos/química , Maleabilidade
15.
J Control Release ; 310: 82-93, 2019 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-31398360

RESUMO

Understanding the release kinetics of siRNA from nanocarriers, their cellular uptake, their in vivo biodistribution and pharmacokinetics is a fundamental prerequisite for efficient optimisation of the design of nanocarriers for siRNA-based therapeutics. Thus, we investigated the influence of composition on the siRNA release from lipid-polymer hybrid nanoparticles (LPNs) consisting of cationic lipidoid 5 (L5) and poly(DL-lactic-co-glycolic acid) (PLGA) intended for pulmonary administration. An array of siRNA-loaded LPNs was prepared by systematic variation of: (i) the L5 content (10-20%, w/w), and (ii) the L5:siRNA ratio (10,1-30:1, w/w). For comparative purposes, L5-based lipoplexes, L5-based stable nucleic acid lipid nanoparticles (SNALPs). and dioleoyltrimethylammoniumpropane (DOTAP)-modified LPNs loaded with siRNA were also prepared. Release studies in buffer and lung surfactant-containing medium showed that siRNA release is dependent on the presence of both surfactant and heparin (a displacing agent) in the release medium, since these interact with the lipid shell structure thereby facilitating decomplexation of L5 and siRNA, as evident from the retarded siRNA release when the L5 content and the L5:siRNA ratio were increased. This confirms the hypothesis that siRNA loaded in LPNs is predominantly present as complexes with the cationic lipid and primarily is located near the particle surface. Cellular uptake and tolerability studies in the human macrophage cell line THP-1 and the type I-like human alveolar epithelial cell line hAELVi, which together represents a monolayer-based barrier model of lung epithelium, indicated that uptake of LPNs was much higher in THP-1 cells in agreement with their primary clearance role. In vivo biodistributions of formulations loaded with Alexa Fluor® 750-labelled siRNA after pulmonary administration in mice were compared by using quantitative fluorescence imaging tomography. The L5-modified LPNs, SNALPs and DOTAP-modified LPNs displayed significantly increased lung retention of siRNA as compared to L5-based lipoplexes, which had a biodistribution profile comparable to that of non-loaded siRNA, for which >50% of the siRNA dose permeated the air-blood barrier within 6 h and subsequently was excreted via the kidneys. Hence, the enhanced lung retention upon pulmonary administration of siRNA-loaded LPNs represents a promising characteristic that can be used to control the delivery of the siRNA cargo to lung tissue for local management of disease.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Pulmão/efeitos dos fármacos , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , RNA Interferente Pequeno/administração & dosagem , Administração por Inalação , Animais , Liberação Controlada de Fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Inativação Gênica , Humanos , Pulmão/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Modelos Teóricos , RNA Interferente Pequeno/farmacocinética , Células THP-1 , Distribuição Tecidual
16.
Artigo em Inglês | MEDLINE | ID: mdl-31334131

RESUMO

Synthetic peptidomimetics may be designed to mimic functions of antimicrobial peptides, including potentiation of antibiotics, yet possessing improved pharmacological properties. Pairwise screening of 42 synthetic peptidomimetics combined with the antibiotics azithromycin and rifampicin in multidrug-resistant (MDR) Escherichia coli ST131 and Klebsiella pneumoniae ST258 led to identification of two subclasses of α-peptide/ß-peptoid hybrids that display synergy with azithromycin and rifampicin (fractional inhibitory concentration indexes of 0.03-0.38). Further screening of the best three peptidomimetics in combination with a panel of 21 additional antibiotics led to identification of peptidomimetics that potentiated ticarcillin/clavulanate and erythromycin against E. coli, and clindamycin against K. pneumoniae. The study of six peptidomimetics was extended to Pseudomonas aeruginosa, confirming synergy with antibiotics for five of them. The most promising compound, H-(Lys-ßNPhe)8-NH2, exerted only a minor effect on the viability of mammalian cells (EC50 ≥ 124-210 µM), and thus exhibited the highest selectivity toward bacteria. This compound also synergized with rifampicin and azithromycin at sub-micromolar concentrations (0.25-0.5 µM), thereby inducing susceptibility to these antibiotics at clinically relevant concentrations in clinical MDR isolates. This peptidomimetic lead and its analogs constitute promising candidates for efficient repurposing of rifampicin and azithromycin against Gram-negative pathogens.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Peptidomiméticos/farmacologia , Rifampina/farmacologia , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Células Hep G2 , Humanos , Klebsiella pneumoniae , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Pseudomonas aeruginosa/efeitos dos fármacos
17.
Eur J Pharm Biopharm ; 142: 38-48, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31199978

RESUMO

Rheumatoid arthritis (RA) is a common autoimmune disease, which is characterized by painful chronic inflammation in the joints, and novel safe and efficacious treatments are urgently needed. RNA interference (RNAi) therapy based on small interfering RNA (siRNA) is a promising approach for silencing specific genes involved in inflammation. However, delivery of siRNA to the target site, i.e. the cytosol of immune cells, is a challenge. Here, we designed lipid-polymer hybrid nanoparticles (LPNs) composed of lipidoid and poly(DL-lactic-co-glycolic acid) loaded with a therapeutic cargo siRNA directed against the proinflammatory cytokine tumor necrosis factor (TNF), which plays a key role in the progression of RA. We compared their efficacy and safety with reference lipidoid-based stable nucleic acid lipid particles (SNALPs) in vitro and in vivo. Cryogenic transmission electron microscopy, atomic force microscopy and small-angle X-ray scattering revealed that the mode of loading of siRNA in lamellar structures differs between the two formulations. Thus, siRNA was tightly packed in LPNs, while LPNs displayed lower adhesion than SNALPs. The LPNs mediated a higher TNF silencing effect in vitro than SNALPs in the RAW 264.7 macrophage cell line activated with lipopolysaccharide. For both types of delivery systems, macropinocytosis was involved in cellular uptake. In addition, clathrin-mediated endocytosis contributed to uptake of SNALPs. LPNs loaded with TNF siRNA mediated sequence-specific suppression of inflammation in a murine experimental arthritis model upon intra-articular administration. Hence, the present study demonstrates that LPN-mediated TNF knockdown constitutes a promising approach for arthritis therapy of TNF-mediated chronic inflammatory conditions.


Assuntos
Artrite Experimental/tratamento farmacológico , Inflamação/tratamento farmacológico , Lipídeos/química , Nanopartículas/química , Polímeros/química , RNA Interferente Pequeno/química , Fator de Necrose Tumoral alfa/química , Animais , Artrite Reumatoide/tratamento farmacológico , Linhagem Celular , Composição de Medicamentos/métodos , Feminino , Inativação Gênica/fisiologia , Humanos , Injeções Intra-Articulares/métodos , Camundongos , Camundongos Endogâmicos BALB C , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células RAW 264.7 , Interferência de RNA/fisiologia , RNA Interferente Pequeno/administração & dosagem , Fator de Necrose Tumoral alfa/administração & dosagem
18.
Eur J Pharm Biopharm ; 140: 29-39, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31055066

RESUMO

Using subunit vaccines, e.g., based on peptide or protein antigens, to teach the immune system to kill abnormal host cells via induction of cytotoxic T lymphocytes (CTL) is a promising strategy against intracellular infections and cancer. However, customized adjuvants are required to potentiate antigen-specific cellular immunity. One strong CTL-inducing adjuvant is the liposomal cationic adjuvant formulation (CAF)09, which is composed of dimethyldioctadecylammonium (DDA) bromide, monomycoloyl glycerol (MMG) analogue 1 and polyinosinic:polycytidylic acid [poly(I:C)]. However, this strong CTL induction requires intraperitoneal administration because the vaccine forms a depot at the site of injection (SOI) after subcutaneous (s.c.) or intramuscular (i.m.) injection, and depot formation impedes the crucial vaccine targeting to the cross-presenting dendritic cells (DCs) residing in the lymph nodes (LNs). The purpose of the present study was to investigate the effect of polyethylene glycol (PEG) grafting of CAF09 on the ability of the vaccine to induce antigen-specific CTL responses after s.c. administration. We hypothesized that steric stabilization and charge shielding of CAF09 by PEGylation may reduce depot formation at the SOI and enhance passive drainage to the LNs, eventually improving CTL induction. Hence, the vaccine (antigen/CAF09) was post-grafted with a novel type of anionic PEGylated peptides based on GDGDY repeats, which were end-conjugated with one or two PEG1000 moieties, resulting in mono- and bis-PEG-peptides of different lengths (10, 15 and 20 amino acid residues). For comparison, CAF09 was also grafted by inclusion of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(PEG)-2000 (DSPE-PEG2000) in the bilayer structure during preparation. Grafting of CAF09 with either type of PEG resulted in charge shielding, evident from a reduced surface charge. Upon s.c. immunization of mice with the model antigen ovalbumin (OVA) adjuvanted with PEGylated CAF09, stronger CTL responses were induced as compared to immunization of mice with unadjuvanted OVA. Biodistribution studies confirmed that grafting of CAF09 with DSPE-PEG2000 improved the passive drainage of the vaccine to LNs, because a higher dose fraction was recovered in DCs present in the draining LNs, as compared to the dose fraction detected for non-PEGylated CAF09. In conclusion, PEGylation of CAF09 may be a useful strategy for the design of an adjuvant, which induces CTL responses after s.c. and i.m. administration. In the present studies, CAF09 grafted with 10 mol% DSPE-PEG2000 is the most promising of the tested adjuvants, but additional studies are required to further elucidate the potential of the strategy.


Assuntos
Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Lipossomos/química , Polietilenoglicóis/química , Linfócitos T Citotóxicos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Feminino , Imunidade Celular/imunologia , Imunização/métodos , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Fosfatidiletanolaminas/química , Compostos de Amônio Quaternário/química , Distribuição Tecidual
19.
Front Microbiol ; 10: 275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30842761

RESUMO

Pseudomonas aeruginosa infection is a predominant cause of morbidity and mortality in patients with cystic fibrosis infection and with a compromised immune system. Emergence of bacterial resistance renders existing antibiotics inefficient, and therefore discovery of new antimicrobial agents is highly warranted. In recent years, numerous studies have demonstrated that antimicrobial peptides (AMPs) constitute potent agents against a range of pathogenic bacteria. However, AMPs possess a number of drawbacks such as susceptibility to proteolytic degradation with ensuing low bioavailability. To circumvent these undesired properties of AMPs unnatural amino acids or altered backbones have been incorporated to provide stable peptidomimetics with retained antibacterial activity. Here, we report on antimicrobial α-peptide/ß-peptoid lysine-based peptidomimetics that exhibit high potency against clinical drug-resistant P. aeruginosa strains obtained from cystic fibrosis patients. These clinical strains possess phoQ and/or pmrB mutations that confer high resistance to colistin, the last-resort antibiotic for treatment of infections caused by P. aeruginosa. The lead peptidomimetic LBP-2 demonstrated a 12-fold improved anti-pseudomonal activity as compared to colistin sulfate as well as favorable killing kinetics, similar antibiofilm activity, and moderate cytotoxicity.

20.
Eur J Med Chem ; 168: 134-145, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30807888

RESUMO

Recent discovery of potent antibacterial antisense PNA-peptide conjugates encouraged development of a fast and efficient synthesis protocol that facilitates structure-activity studies. The use of an Fmoc/Boc protection scheme for both PNA monomers and amino acid building blocks in combination with microwave-assisted solid-phase synthesis proved to be a convenient procedure for continuous assembly of antisense PNA-peptide conjugates. A validated antisense PNA oligomer (CTCATACTCT; targeting mRNA of the acpP gene) was linked to N-terminally modified drosocin (i.e., RXR-PRPYSPRPTSHPRPIRV; X = aminohexanoic acid) or to a truncated Pip1 peptide (i.e., RXRRXR-IKILFQNRRMKWKK; X = aminohexanoic acid), and determination of the antibacterial effects of the resulting conjugates allowed assessment of the influence of different linkers as well as differences between the L- and D-forms of the peptides. The drosocin-derived compound without a linker moiety exhibited highest antibacterial activity against both wild-type Escherichia coli and Klebsiella pneumoniae (MICs in the range 2-4 µg/mL ∼ 0.3-0.7 µM), while analogues displaying an ethylene glycol (eg1) moiety or a polar maleimide linker also possessed activity toward wild-type K. pneumoniae (MICs of 4-8 µg/mL ∼ 0.6-1.3 µM). Against two colistin-resistant E. coli strains the linker-deficient compound proved most potent (with MICs in the range 2-4 µg/mL ∼ 0.3-0.7 µM). The truncated all-L Pip1 peptide had moderate inherent activity against E. coli, and this was unaltered or reduced upon conjugation to the antisense PNA oligomer. By contrast, this peptide was 8-fold less potent against K. pneumoniae, but in this case some PNA-peptide conjugates exhibited potent antisense activity (MICs of 2-8 µg/mL ∼ 0.3-1.2 µM). Most interestingly, the antibacterial activity of the D-form peptide itself was 2- to 16-fold higher than that of the L-form, even for the colistin- and tigecycline-resistant E. coli strains (MIC of 1-2 µg/mL ∼ 0.25-0.5 µM). Low activity was found for conjugates with a two-mismatch PNA sequence corroborating an antisense mode of action. Conjugates containing a D-form peptide were also significantly less active. In conclusion, we have designed and synthesized antisense PNA-drosocin conjugates with potent antibacterial activity against colistin- and tigecycline-resistant E. coli and K. pneumonia without concomitant hemolytic properties. In addition, a truncated D-form of Pip1 was identified as a peptide exhibiting potent activity against both wild-type and multidrug-resistant E. coli, P. aeruginosa, and A. baumannii (MICs within the range 1-4 µg/mL ∼ 0.25-1 µM) as well as toward wild-type Staphylococcus aureus (MIC of 2-4 µg/mL ∼ 0.5-1.0 µM).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Micro-Ondas , Técnicas de Síntese em Fase Sólida , Antibacterianos/síntese química , Antibacterianos/química , Colistina/química , Colistina/farmacologia , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Relação Estrutura-Atividade , Tigeciclina/química , Tigeciclina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA