Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 30(2): 589-604, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36624264

RESUMO

Kinase signaling in the tiered activation of inflammasomes and associated pyroptosis is a prime therapeutic target for inflammatory diseases. While MAPKs subsume pivotal roles during inflammasome priming, specifically the MAP3K7/JNK1/NLRP3 licensing axis, their involvement in successive steps of inflammasome activation is poorly defined. Using live-cell MAPK biosensors to focus on the inflammasome triggering event allowed us to identify a subsequent process of biphasic JNK activation. We find that this biphasic post-trigger JNK signaling initially facilitates the mitochondrial reactive oxygen species generation needed to support core inflammasome formation, then supports the gasdermin-mediated cell permeation required for release of active IL-1ß from human macrophages. We further identify and characterize a xanthine oxidase-ROS activated MAP3K5/JNK2 substrate licensing complex as a novel regulator of the GSDMD mobilization which precedes pyroptosis. We show that inhibitors targeting this MAP3K5 cascade alleviate morbidity in mouse models of colitis and dampen both augmented IL-1ß release and cell permeation in monocytes derived from patients with gain-of-function inflammasomopathies.


Assuntos
Inflamassomos , Piroptose , Animais , Humanos , Camundongos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Transdução de Sinais
2.
Cell Rep ; 41(1): 111441, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36179680

RESUMO

Biologically active small molecules can impart modulatory effects, in some cases providing extended long-term memory. In a screen of biologically active small molecules for regulators of tumor necrosis factor (TNF) induction, we identify several compounds with the ability to induce training effects on human macrophages. Rutaecarpine shows acute and long-term modulation, enhancing lipopolysaccharide (LPS)-induced pro-inflammatory cytokine secretion and relieving LPS tolerance in human macrophages. Rutaecarpine inhibits ß-glucan-induced H3K4Me3 marks at the promoters of several pro-inflammatory cytokines, highlighting the potential of this molecule to modulate chromosomal topology. Syk kinase inhibitor (SYKi IV), another screen hit, promotes an enhanced response to LPS similar to that previously reported for ß-glucan-induced training. Macrophages trained with SYKi IV show a high degree of resistance to influenza A, multiple variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and OC43 coronavirus infection, highlighting a potential application of this molecule and other SYKis as prophylactic treatments for viral susceptibility.


Assuntos
Tratamento Farmacológico da COVID-19 , beta-Glucanas , Citocinas , Humanos , Alcaloides Indólicos , Lipopolissacarídeos , Macrófagos , Quinazolinonas , SARS-CoV-2 , Quinase Syk , Fator de Necrose Tumoral alfa
3.
Sci Data ; 9(1): 491, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961990

RESUMO

The Toll-like receptor (TLR) and chemotaxis pathways are key components of the innate immune system. Subtle variation in the concentration, timing, and molecular structure of the ligands are known to affect downstream signaling and the resulting immune response. Computational modeling and simulation at the molecular interaction level can be used to study complex biological pathways, but such simulations require protein concentration values as model parameters. Here we report the development and application of targeted mass spectrometry assays to measure the absolute abundance of proteins of the mouse macrophage Toll-like receptor 4 (TLR4) and chemotaxis pathways. Two peptides per protein were quantified, if possible. The protein abundance values ranged from 1,332 to 227,000,000 copies per cell. They moderately correlated with transcript abundance values from a previously published mouse macrophage RNA-seq dataset, and these two datasets were combined to make proteome-wide abundance estimates. The datasets produced during this investigation can be used for pathway modeling and simulation, as well as for other studies of the TLR and chemotaxis pathways.


Assuntos
Quimiotaxia , Macrófagos , Receptores Toll-Like , Animais , Ligantes , Macrófagos/metabolismo , Camundongos , Transdução de Sinais , Receptores Toll-Like/metabolismo
4.
Sci Signal ; 14(694)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344832

RESUMO

Noncanonical inflammasome activation by cytosolic lipopolysaccharide (LPS) is a critical component of the host response to Gram-negative bacteria. Cytosolic LPS recognition in macrophages is preceded by a Toll-like receptor (TLR) priming signal required to induce transcription of inflammasome components and facilitate the metabolic reprograming that fuels the inflammatory response. Using a genome-scale arrayed siRNA screen to find inflammasome regulators in mouse macrophages, we identified the mitochondrial enzyme nucleoside diphosphate kinase D (NDPK-D) as a regulator of both noncanonical and canonical inflammasomes. NDPK-D was required for both mitochondrial DNA synthesis and cardiolipin exposure on the mitochondrial surface in response to inflammasome priming signals mediated by TLRs, and macrophages deficient in NDPK-D had multiple defects in LPS-induced inflammasome activation. In addition, NDPK-D was required for the recruitment of TNF receptor-associated factor 6 (TRAF6) to mitochondria, which was critical for reactive oxygen species (ROS) production and the metabolic reprogramming that supported the TLR-induced gene program. NDPK-D knockout mice were protected from LPS-induced shock, consistent with decreased ROS production and attenuated glycolytic commitment during priming. Our findings suggest that, in response to microbial challenge, NDPK-D-dependent TRAF6 mitochondrial recruitment triggers an energetic fitness checkpoint required to engage and maintain the transcriptional program necessary for inflammasome activation.


Assuntos
Inflamassomos , Nucleosídeo Difosfato Quinase D , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nucleosídeo Difosfato Quinase D/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
PLoS Pathog ; 17(3): e1009395, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684179

RESUMO

The mammalian immune system is constantly challenged by signals from both pathogenic and non-pathogenic microbes. Many of these non-pathogenic microbes have pathogenic potential if the immune system is compromised. The importance of type I interferons (IFNs) in orchestrating innate immune responses to pathogenic microbes has become clear in recent years. However, the control of opportunistic pathogens-and especially intracellular bacteria-by type I IFNs remains less appreciated. In this study, we use the opportunistic, Gram-negative bacterial pathogen Burkholderia cenocepacia (Bc) to show that type I IFNs are capable of limiting bacterial replication in macrophages, preventing illness in immunocompetent mice. Sustained type I IFN signaling through cytosolic receptors allows for increased expression of autophagy and linear ubiquitination mediators, which slows bacterial replication. Transcriptomic analyses and in vivo studies also show that LPS stimulation does not replicate the conditions of intracellular Gram-negative bacterial infection as it pertains to type I IFN stimulation or signaling. This study highlights the importance of type I IFNs in protection against opportunistic pathogens through innate immunity, without the need for damaging inflammatory responses.


Assuntos
Infecções por Burkholderia/imunologia , Burkholderia cenocepacia/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Macrófagos/imunologia , Animais , Citosol/imunologia , Citosol/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
Sci Signal ; 13(661)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293463

RESUMO

Small, genetically determined differences in transcription [expression quantitative trait loci (eQTLs)] are implicated in complex diseases through unknown molecular mechanisms. Here, we showed that a small, persistent increase in the abundance of the innate pathogen sensor NOD1 precipitated large changes in the transcriptional state of monocytes. A ~1.2- to 1.3-fold increase in NOD1 protein abundance resulting from loss of regulation by the microRNA cluster miR-15b/16 lowered the threshold for ligand-induced activation of the transcription factor NF-κB and the MAPK p38. An additional sustained increase in NOD1 abundance to 1.5-fold over basal amounts bypassed this low ligand concentration requirement, resulting in robust ligand-independent induction of proinflammatory genes and oncogenes. These findings reveal that tight regulation of NOD1 abundance prevents this sensor from exceeding a physiological switching checkpoint that promotes persistent inflammation and oncogene expression. Furthermore, our data provide insight into how a quantitatively small change in protein abundance can produce marked changes in cell state that can serve as the initiator of disease.


Assuntos
Regulação da Expressão Gênica , Monócitos/metabolismo , Proteína Adaptadora de Sinalização NOD1/biossíntese , Proteínas Oncogênicas/biossíntese , Transdução de Sinais , Transcrição Gênica , Humanos , Inflamação/metabolismo , Células THP-1
7.
J Proteome Res ; 19(9): 3716-3731, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32529831

RESUMO

We have used mass spectrometry (MS) to characterize protein signaling in lipopolysaccharide (LPS)-stimulated macrophages from human blood, human THP1 cells, mouse bone marrow, and mouse Raw264.7 cells. Protein ADP-ribosylation was truncated down to phosphoribose, allowing for enrichment and identification of the resulting phosphoribosylated peptides alongside phosphopeptides. Size exclusion chromatography-MS (SEC-MS) was used to separate proteoforms by size; protein complexes were then identified by weighted correlation network analysis (WGCNA) based on their correlated movement into or out of SEC fractions following stimulation, presenting an analysis method for SEC-MS that does not rely on established databases. We highlight two modules of interest: one linked to the apoptosis signal-regulating kinase (ASK) signalosome and the other containing poly(ADP-ribose) polymerase 9 (PARP9). Finally, PARP inhibition was used to perturb the characterized systems, demonstrating the importance of ADP-ribosylation for the global interactome. All post-translational modification (PTM) and interactome data have been aggregated into a meta-database of 6729 proteins, with ADP-ribosylation characterized on 2905 proteins and phosphorylation characterized on 2669 proteins. This database-titled MAPCD, for Macrophage ADP-ribosylation, Phosphorylation, and Complex Dynamics-serves as an invaluable resource for studying crosstalk between the ADP-ribosylome, phosphoproteome, and interactome.


Assuntos
ADP-Ribosilação , Lipopolissacarídeos , Difosfato de Adenosina , Adenosina Difosfato Ribose/metabolismo , Animais , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Proteoma/genética , Proteoma/metabolismo
8.
Mediators Inflamm ; 2019: 3451461, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148944

RESUMO

Interleukin-10 (IL-10) is a key anti-inflammatory cytokine, secreted by macrophages and other immune cells to attenuate inflammation. Autocrine type I interferons (IFNs) largely mediate the delayed expression of IL-10 by LPS-stimulated macrophages. We have previously shown that IL-10 is synergistically expressed in macrophages following a costimulus of a TLR agonist and cAMP. We now show that the cAMP pathway directly upregulates IL-10 transcription and plays an important permissive and synergistic role in early, but not late, LPS-stimulated IL-10 mRNA and protein expression in mouse macrophages and in a mouse septic shock model. Our results suggest that the loss of synergism is not due to desensitization of the cAMP inducing signal, and it is not mediated by a positive crosstalk between the cAMP and type I IFN pathways. First, cAMP elevation in LPS-treated cells decreased the secretion of type I IFN. Second, autocrine/paracrine type I IFNs induce IL-10 promoter reporter activity only additively, but not synergistically, with the cAMP pathway. IL-10 promoter reporter activity was synergistically induced by cAMP elevation in macrophages stimulated by an agonist of either TLR4, TLR2/6, or TLR7, receptors which signal via MyD88, but not by an agonist of TLR3 which signals independently of MyD88. Moreover, MyD88 knockout largely reduced the synergistic IL-10 expression, indicating that MyD88 is required for the synergism displayed by LPS with cAMP. This report delineates the temporal regulation of early cAMP-accelerated vs. late type I IFN-dependent IL-10 transcription in LPS-stimulated murine macrophages that can limit inflammation at its onset.


Assuntos
Interferon Tipo I/metabolismo , Interleucina-10/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Células RAW 264.7 , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
9.
Nat Cell Biol ; 21(5): 640-650, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011167

RESUMO

Spliceosome mutations are common in myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML), but the oncogenic changes due to these mutations have not been identified. Here a global analysis of exon usage in AML samples revealed distinct molecular subsets containing alternative spliced isoforms of inflammatory and immune genes. Interleukin-1 receptor-associated kinase 4 (IRAK4) was the dominant alternatively spliced isoform in MDS and AML and is characterized by a longer isoform that retains exon 4, which encodes IRAK4-long (IRAK4-L), a protein that assembles with the myddosome, results in maximal activation of nuclear factor kappa-light-chain-enhancer of B cells (NF-κB) and is essential for leukaemic cell function. Expression of IRAK4-L is mediated by mutant U2 small nuclear RNA auxiliary factor 1 (U2AF1) and is associated with oncogenic signalling in MDS and AML. Inhibition of IRAK4-L abrogates leukaemic growth, particularly in AML cells with higher expression of the IRAK4-L isoform. Collectively, mutations in U2AF1 induce expression of therapeutically targetable 'active' IRAK4 isoforms and provide a genetic link to activation of chronic innate immune signalling in MDS and AML.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Fator de Processamento U2AF/genética , Processamento Alternativo/genética , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade Inata/genética , Inflamação/genética , Inflamação/patologia , Leucemia Mieloide Aguda/patologia , Masculino , Mutação/genética , Síndromes Mielodisplásicas/patologia , Isoformas de Proteínas/genética , Transdução de Sinais , Spliceossomos/genética
10.
Front Immunol ; 10: 705, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024544

RESUMO

The nuclear factor-κB (NF-κB) signaling pathway is one of the best understood immune-related pathways thanks to almost four decades of intense research. NF-κB signaling is activated by numerous discrete stimuli and is a master regulator of the inflammatory response to pathogens and cancerous cells, as well as a key regulator of autoimmune diseases. In this regard, the role of NF-κB signaling in immunity is not unlike that of the macrophage. The dynamics by which NF-κB proteins shuttle between the cytoplasm and the nucleus to initiate transcription have been studied rigorously in fibroblasts and other non-hematopoietic cells, but many questions remain as to how current models of NF-κB signaling and dynamics can be translated to innate immune cells such as macrophages. In this review, we will present recent research on the dynamics of NF-κB signaling and focus especially on how these dynamics vary in different cell types, while discussing why these characteristics may be important. We will end by looking ahead to how new techniques and technologies should allow us to analyze these signaling processes with greater clarity, bringing us closer to a more complete understanding of inflammatory transcription factor dynamics and how different cellular contexts might allow for appropriate control of innate immune responses.


Assuntos
Macrófagos/imunologia , NF-kappa B/imunologia , Transdução de Sinais/imunologia , Animais , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia
11.
Cell Rep ; 25(1): 95-106.e6, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282041

RESUMO

Activation of the TLR4 signaling pathway by lipopolysaccharide (LPS) leads to induction of both inflammatory and interferon-stimulated genes, but the mechanisms through which these coordinately activated transcriptional programs are balanced to promote an optimal innate immune response remain poorly understood. In a genome-wide small interfering RNA (siRNA) screen of the LPS-induced tumor necrosis factor α (TNF-α) response in macrophages, we identify the interferon-stimulated protein IFIT1 as a negative regulator of the inflammatory gene program. Transcriptional profiling further identifies a positive regulatory role for IFIT1 in type I interferon expression, implicating IFIT1 as a reciprocal modulator of LPS-induced gene classes. We demonstrate that these effects of IFIT1 are mediated through modulation of a Sin3A-HDAC2 transcriptional regulatory complex at LPS-induced gene loci. Beyond the well-studied role of cytosolic IFIT1 in restricting viral replication, our data demonstrate a function for nuclear IFIT1 in differential transcriptional regulation of separate branches of the LPS-induced gene program.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Macrófagos/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Transdução de Sinais , Complexo Correpressor Histona Desacetilase e Sin3 , Fator de Necrose Tumoral alfa/imunologia , Células U937
12.
Dig Dis Sci ; 63(12): 3382-3397, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30196390

RESUMO

BACKGROUND AND AIMS: Concanavalin A is known to activate T cells and to cause liver injury and hepatitis, mediated in part by secretion of TNFα from macrophages. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors have been shown to prevent tissue damage in various animal models of inflammation. The objectives of this study were to evaluate the efficacy and mechanism of the PARP-1 inhibitor 3-aminobenzamide (3-AB) in preventing concanavalin A-induced liver damage. METHODS: We tested the in vivo effects of 3-AB on concanavalin A-treated mice, its effects on lipopolysaccharide (LPS)-stimulated macrophages in culture, and its ability to act as a scavenger in in vitro assays. RESULTS: 3-AB markedly reduced inflammation, oxidative stress, and liver tissue damage in concanavalin A-treated mice. In LPS-stimulated RAW264.7 macrophages, 3-AB inhibited NFκB transcriptional activity and subsequent expression of TNFα and iNOS and blocked NO production. In vitro, 3-AB acted as a hydrogen peroxide scavenger. The ROS scavenger N-acetylcysteine (NAC) and the ROS formation inhibitor diphenyleneiodonium (DPI) also inhibited TNFα expression in stimulated macrophages, but unlike 3-AB, NAC and DPI were unable to abolish NFκB activity. PARP-1 knockout failed to affect NFκB and TNFα suppression by 3-AB in stimulated macrophages. CONCLUSIONS: Our results suggest that 3-AB has a therapeutic effect on concanavalin A-induced liver injury by inhibiting expression of the key pro-inflammatory cytokine TNFα, via PARP-1-independent NFκB suppression and via an NFκB-independent anti-oxidative mechanism.


Assuntos
Benzamidas/farmacologia , Hepatite , Macrófagos , Doença Aguda , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Células Cultivadas , Concanavalina A/farmacologia , Modelos Animais de Doenças , Hepatite/metabolismo , Hepatite/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Mitógenos/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
13.
J Immunol ; 201(2): 757-771, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29898962

RESUMO

Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1-/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1+/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.


Assuntos
Cromatina/metabolismo , Fator de Transcrição Ikaros/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Animais , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica/imunologia , Humanos , Fator de Transcrição Ikaros/genética , Inflamação/genética , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica , Células RAW 264.7
14.
Methods Mol Biol ; 1714: 67-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29177856

RESUMO

Nuclear factor kappa-B (NF-κB) is a key transcription factor in the regulation of the innate immune inflammatory response in activated macrophages. NF-κB functions as a homo- or hetero-dimer derived from one or more of the five members of the NF-κB family, and is activated through a well-studied process of stimulus-dependent inhibitor degradation, post-translational modification, nuclear translocation, and chromatin binding. Its activity is subject to multiple levels of feedback control through both inhibitor protein activity and direct regulation of NF-κB components. Many methods have been developed to measure and quantify NF-κB activation. In this chapter, we summarize available methods and present a protocol for image-based measurement of NF-κB activation in macrophages activated with microbial stimuli. Using either a stably expressed GFP-tagged fusion of the RelA NF-κB protein, or direct detection of endogenous RelA by immunocytochemistry, we describe data collection and analysis to quantify NF-κB cytosol to nuclear translocation in single cells using fluorescence microscopy.


Assuntos
Imuno-Histoquímica/métodos , Macrófagos/metabolismo , Microscopia de Fluorescência/métodos , NF-kappa B/metabolismo , Análise de Célula Única/métodos , Receptores Toll-Like/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Transporte Proteico
15.
Immunity ; 47(2): 298-309.e5, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28801231

RESUMO

Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB and AP-1. Our investigation using GC treatments with clinically relevant timing highlights mechanisms underlying GR actions for modulating the "inflamed epigenome."


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Receptores de Glucocorticoides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Humanos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transcriptoma
16.
Cell Syst ; 5(1): 25-37.e3, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28750197

RESUMO

A typical pathogen presents a combination of Toll-like receptor (TLR) ligands during infection. Although individual TLR pathways have been well characterized, the nature of this "combinatorial code" in pathogen sensing remains unclear. Here, we conducted a comprehensive transcriptomic analysis of primary macrophages stimulated with all possible pairwise combinations of four different TLR ligands to understand the requirements, kinetics, and outcome of combined pathway engagement. We find that signal integration between TLR pathways leads to non-additive responses for a subset of immune mediators with sustained expression (>6 hr) properties and T cell polarizing function. To identify the underlying regulators, we conducted a focused RNAi screen and identified four genes-Helz2, Phf11d, Sertad3, and Zscan12-which preferentially affect the late phase response of TLR-induced immune effector expression. This study reveals key molecular details of how contemporaneous signaling through multiple TLRs, as would often be the case with pathogen infection, produce biological outcomes distinct from the single ligands typically used to characterize TLR pathways.


Assuntos
Macrófagos/imunologia , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Imidazóis/imunologia , Lipopeptídeos/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Poli I-C/imunologia , Interferência de RNA , Integração de Sistemas , Ativação Transcricional
17.
Sci Rep ; 7(1): 1428, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469251

RESUMO

TLR4 signalling through the MyD88 and TRIF-dependent pathways initiates translocation of the transcription factor NF-κB into the nucleus. In cell population studies using mathematical modeling and functional analyses, Cheng et al. suggested that LPS-driven activation of MyD88, in the absence of TRIF, impairs NF-κB translocation. We tested the model proposed by Cheng et al. using real-time single cell analysis in macrophages expressing EGFP-tagged p65 and a TNFα promoter-driven mCherry. Following LPS stimulation, cells lacking TRIF show a pattern of NF-κB dynamics that is unaltered from wild-type cells, but activation of the TNFα promoter is impaired. In macrophages lacking MyD88, there is minimal NF-κB translocation to the nucleus in response to LPS stimulation, and there is no activation of the TNFα promoter. These findings confirm that signalling through MyD88 is the primary driver for LPS-dependent NF-κB translocation to the nucleus. The pattern of NF-κB dynamics in TRIF-deficient cells does not, however, directly reflect the kinetics of TNFα promoter activation, supporting the concept that TRIF-dependent signalling plays an important role in the transcription of this cytokine.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Camundongos , Fator 88 de Diferenciação Mieloide , Células RAW 264.7 , Transdução de Sinais
18.
Sci Data ; 4: 170008, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248925

RESUMO

The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection and its contribution to endotoxemia and sepsis. Here we describe a genome-wide siRNA screen to identify genes regulating the mouse macrophage TNF-α and NF-κB responses to LPS. We include a secondary validation screen conducted with six independent siRNAs per gene to facilitate removal of off-target screen hits. We also provide microarray data from the same LPS-treated macrophage cells to facilitate downstream data analysis. These data provide a resource for analyzing gene function in the predominant pathway driving inflammatory signaling and cytokine expression in mouse macrophages.


Assuntos
Ativação de Macrófagos/genética , Macrófagos/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos , NF-kappa B/genética , RNA Interferente Pequeno , Fator de Necrose Tumoral alfa/genética
19.
Sci Data ; 4: 170007, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28248930

RESUMO

The mammalian innate immune system senses many bacterial stimuli through the toll-like receptor (TLR) family. Activation of the TLR4 receptor by bacterial lipopolysaccharide (LPS) is the most widely studied TLR pathway due to its central role in host responses to gram-negative bacterial infection and its contribution to endotoxemia and sepsis. Here we describe a genome-wide siRNA screen to identify genes regulating the human macrophage TNF-α response to LPS. We include a secondary validation screen conducted with six independent siRNAs per gene to facilitate removal of off-target screen hits. We also provide microarray data from the same LPS-treated macrophage cells to facilitate downstream data analysis. Tertiary screening with multiple TLR ligands and a microbial extract demonstrate that novel screen hits have broad effects on the innate inflammatory response to microbial stimuli. These data provide a resource for analyzing gene function in the predominant pathway driving inflammatory cytokine expression in human macrophages.


Assuntos
Ativação de Macrófagos/genética , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Lipopolissacarídeos , RNA Interferente Pequeno , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética
20.
Mol Cell Proteomics ; 16(4 suppl 1): S172-S186, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28235783

RESUMO

The innate immune system is the organism's first line of defense against pathogens. Pattern recognition receptors (PRRs) are responsible for sensing the presence of pathogen-associated molecules. The prototypic PRRs, the membrane-bound receptors of the Toll-like receptor (TLR) family, recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response through signaling pathways that depend on the adaptor molecules MyD88 and TRIF. Deciphering the differences in the complex signaling events that lead to pathogen recognition and initiation of the correct response remains challenging. Here we report the discovery of temporal changes in the protein signaling components involved in innate immunity. Using an integrated strategy combining unbiased proteomics, transcriptomics and macrophage stimulations with three different PAMPs, we identified differences in signaling between individual TLRs and revealed specifics of pathway regulation at the protein level.


Assuntos
Imunidade Inata , Macrófagos/imunologia , Proteoma/metabolismo , Infecções por Pseudomonas/imunologia , Receptores Toll-Like/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Camundongos , Pseudomonas aeruginosa/imunologia , Células RAW 264.7 , Processamento Pós-Transcricional do RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA