Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Membr Biol ; 257(1-2): 17-24, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165418

RESUMO

There is increasing evidence, mostly from breast cancer, that use of local anaesthetics during surgery can inhibit disease recurrence by suppressing the motility of the cancer cells dependent on inherent voltage-gated sodium channels (VGSCs). Here, the possibility that lidocaine could affect cellular behaviours associated with metastasis was tested using the Dunning cell model of rat prostate cancer. Mostly, the strongly metastatic (VGSC-expressing) Mat-LyLu cells were used under both normoxic and hypoxic conditions. The weakly metastatic AT-2 cells served for comparison in some experiments. Lidocaine (1-500 µM) had no effect on cell viability or growth but suppressed Matrigel invasion dose dependently in both normoxia and hypoxia. Used as a control, tetrodotoxin produced similar effects. Exposure to hypoxia increased Nav1.7 mRNA expression but VGSCα protein level in plasma membrane was reduced. Lidocaine under both normoxia and hypoxia had no effect on Nav1.7 mRNA expression. VGSCα protein expression was suppressed by lidocaine under normoxia but no effect was seen in hypoxia. It is concluded that lidocaine can suppress prostate cancer invasiveness without effecting cellular growth or viability. Extended to the clinic, the results would suggest that use of lidocaine, and possibly other local anaesthetics, during surgery can suppress any tendency for post-operative progression of prostate cancer.


Assuntos
Neoplasias da Próstata , Canais de Sódio Disparados por Voltagem , Humanos , Masculino , Animais , Ratos , Lidocaína/farmacologia , Anestésicos Locais/farmacologia , Linhagem Celular Tumoral , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Canais de Sódio Disparados por Voltagem/genética , Membrana Celular/metabolismo , RNA Mensageiro/metabolismo , Hipóxia
2.
Clin Exp Metastasis ; 39(4): 679-689, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35643818

RESUMO

A plethora of ion channels have been shown to be involved systemically in the pathophysiology of cancer and ion channel blockers can produce anti-metastatic effects. However, although ion channels are known to frequently function in concerted action, little is known about possible combined effects of ion channel modulators on metastatic cell behaviour. Here, we investigated functional consequences of pharmacologically modulating ATP-gated potassium (KATP) channel and voltage-gated sodium channel (VGSC) activities individually and in combination. Two triple-negative human breast cancer cell lines were used: MDA-MB-231 and MDA-MB-468, the latter mainly for comparison. Most experiments were carried out on hypoxic cells. Electrophysiological effects were studied by whole-cell patch clamp recording. Minoxidil (a KATP channel opener) and ranolazine (a blocker of the VGSC persistent current) had no effect on cell viability and proliferation, alone or in combination. In contrast, invasion was significantly reduced in a dose-dependent manner by clinical concentrations of minoxidil and ranolazine. Combining the two drugs produced significant additive effects at concentrations as low as 0.625 µM ranolazine and 2.5 µM minoxidil. Electrophysiologically, acute application of minoxidil shifted VGSC steady-state inactivation to more hyperpolarised potentials and slowed recovery from inactivation, consistent with inhibition of VGSC activation. We concluded (i) that clinically relevant doses of minoxidil and ranolazine individually could inhibit cellular invasiveness dose dependently and (ii) that their combination was additionally effective. Accordingly, ranolazine, minoxidil and their combination may be repurposed as novel anti-metastatic agents.


Assuntos
Minoxidil , Ranolazina , Neoplasias de Mama Triplo Negativas , Trifosfato de Adenosina , Linhagem Celular Tumoral , Humanos , Canais Iônicos/antagonistas & inibidores , Minoxidil/farmacologia , Ranolazina/farmacologia
3.
Br J Pharmacol ; 179(3): 473-486, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34411279

RESUMO

BACKGROUND AND PURPOSE: Voltage-gated sodium (NaV ) channels are expressed de novo in carcinomas where their activity promotes invasiveness. Breast and colon cancer cells express the neonatal splice variant of NaV 1.5 (nNaV 1.5), which has several amino acid substitutions in the domain I voltage-sensor compared with its adult counterpart (aNaV 1.5). This study aimed to determine whether nNaV 1.5 channels could be distinguished pharmacologically from aNaV 1.5 channels. EXPERIMENTAL APPROACH: Cells expressing either nNaV 1.5 or aNaV 1.5 channels were exposed to low MW inhibitors, an antibody or natural toxins, and changes in electrophysiological parameters were measured. Stable expression in EBNA cells and transient expression in Xenopus laevis oocytes were used. Currents were recorded by whole-cell patch clamp and two-electrode voltage-clamp, respectively. KEY RESULTS: Several clinically used blockers of NaV channels (lidocaine, procaine, phenytoin, mexiletine, ranolazine, and riluzole) could not distinguish between nNaV 1.5 or aNaV 1.5 channels. However, two tarantula toxins (HaTx and ProTx-II) and a polyclonal antibody (NESOpAb) preferentially inhibited currents elicited by either nNaV 1.5 or aNaV 1.5 channels by binding to the spliced region of the channel. Furthermore, the amino acid residue at position 211 (aspartate in aNaV 1.5/lysine in nNaV 1.5), that is, the charge reversal in the spliced region of the channel, played a key role in the selectivity, especially in antibody binding. CONCLUSION AND IMPLICATIONS: We conclude that the cancer-related nNaV 1.5 channel can be distinguished pharmacologically from its nearest neighbour, aNaV 1.5 channels. Thus, it may be possible to design low MW compounds as antimetastatic drugs for non-toxic therapy of nNaV 1.5-expressing carcinomas.


Assuntos
Carcinoma , Venenos de Aranha , Canais de Sódio Disparados por Voltagem , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Venenos de Aranha/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
4.
Cancers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34359733

RESUMO

Voltage-gated Na+ channels (VGSCs) are expressed widely in human carcinomas and play a significant role in promoting cellular invasiveness and metastasis. However, human tissue-based studies and clinical characterization are lacking. In several carcinomas, including colorectal cancer (CRCa), the predominant VGSC is the neonatal splice variant of Nav1.5 (nNav1.5). The present study was designed to determine the expression patterns and clinical relevance of nNav1.5 protein in human CRCa tissues from patients with available clinicopathological history. The immunohistochemistry was made possible by the use of a polyclonal antibody (NESOpAb) specific for nNav1.5. The analysis showed that, compared with normal mucosa, nNav1.5 expression occurred in CRCa samples (i) at levels that were significantly higher and (ii) with a pattern that was more delineated (i.e., apical/basal or mixed). A surprisingly high level of nNav1.5 protein expression also occurred in adenomas, but this was mainly intracellular and diffuse. nNav1.5 showed a statistically significant association with TNM stage, highest expression being associated with TNM IV and metastatic status. Interestingly, nNav1.5 expression co-occurred with other biomarkers associated with metastasis, including hERG1, KCa3.1, VEGF-A, Glut1, and EGFR. Finally, univariate analysis showed that nNav1.5 expression had an impact on progression-free survival. We conclude (i) that nNav1.5 could represent a novel clinical biomarker ('companion diagnostic') useful to better stratify CRCa patients and (ii) that since nNav1.5 expression is functional, it could form the basis of anti-metastatic therapies including in combination with standard treatments.

5.
Front Neurosci ; 14: 404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425751

RESUMO

Breast cancer is one of the most prevalent types of cancers worldwide and yet, its pathophysiology is poorly understood. Single-cell electrophysiological studies have provided evidence that membrane depolarization is implicated in the proliferation and metastasis of breast cancer. However, metastatic breast cancer cells are highly dynamic microscopic systems with complexities beyond a single-cell level. There is an urgent need for electrophysiological studies and technologies capable of decoding the intercellular signaling pathways and networks that control proliferation and metastasis, particularly at a population level. Hence, we present for the first time non-invasive in vitro electrical recordings of strongly metastatic MDA-MB-231 and weakly/non-metastatic MCF-7 breast cancer cell lines. To accomplish this, we fabricated an ultra-low noise sensor that exploits large-area electrodes, of 2 mm2, which maximizes the double-layer capacitance and concomitant detection sensitivity. We show that the current recorded after adherence of the cells is dominated by the opening of voltage-gated sodium channels (VGSCs), confirmed by application of the highly specific inhibitor, tetrodotoxin (TTX). The electrical activity of MDA-MB-231 cells surpasses that of the MCF-7 cells, suggesting a link between the cells' bioelectricity and invasiveness. We also recorded an activity pattern with characteristics similar to that of Random Telegraph Signal (RTS) noise. RTS patterns were less frequent than the asynchronous VGSC signals. The RTS noise power spectral density showed a Lorentzian shape, which revealed the presence of a low-frequency signal across MDA-MB-231 cell populations with propagation speeds of the same order as those reported for intercellular Ca2+ waves. Our recording platform paves the way for real-time investigations of the bioelectricity of cancer cells, their ionic/pharmacological properties and relationship to metastatic potential.

6.
Basic Clin Pharmacol Toxicol ; 127(4): 254-264, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32304618

RESUMO

Anti-invasive effects of riluzole and ranolazine, a neuro-protectant and an anti-anginal drug, respectively, on Mat-LyLu rat prostate cancer (PCa) cells were tested in vitro (a) at non-toxic doses and (b) under both normoxic and hypoxic conditions, the latter common to growing tumours. Tetrodotoxin (TTX) was used as a positive control. Hypoxia had no effect on cell viability but reduced growth at 48 hours. Riluzole (5 µmol/L) or ranolazine (20 µmol/L) had no effect on cell viability or growth under normoxia or hypoxia over 24 hours. Matrigel invasion was not affected by hypoxia but inhibited by TTX, ranolazine and riluzole under a range of conditions. The expression of Nav1.7 mRNA, the prevailing, pro-invasive voltage-gated sodium channel α-subunit (VGSCα), was up-regulated by hypoxia. Riluzole had no effect on Nav1.7 mRNA expression in normoxia but significantly reduced it in hypoxia. VGSCα protein expression in plasma membrane was reduced in hypoxia; riluzole increased it but only under hypoxia. It was concluded (a) that riluzole and ranolazine have anti-invasive effects on rat PCa cells and (b) that Nav1.7 mRNA and protein expression can be modulated by riluzole under hypoxia. Overall, therefore, riluzole and ranolazine may ultimately be "repurposed" as anti-metastatic drugs against PCa.


Assuntos
Movimento Celular/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Riluzol/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hipóxia/tratamento farmacológico , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Invasividade Neoplásica , Ratos , Tetrodotoxina/farmacologia
7.
Cancers (Basel) ; 11(11)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661908

RESUMO

A wide body of evidence suggests that voltage-gated sodium channels (VGSCs) are expressed de novo in several human carcinomas where channel activity promotes a variety of cellular behaviours integral to the metastatic cascade. These include directional motility (including galvanotaxis), pH balance, extracellular proteolysis, and invasion. Contrary to the substantial in vitro data, however, evidence for VGSC involvement in the cancer process in vivo is limited. Here, we critically assess, for the first time, the available in vivo evidence, hierarchically from mRNA level to emerging clinical aspects, including protein-level studies, electrolyte content, animal tests, and clinical imaging. The evidence strongly suggests that different VGSC subtypes (mainly Nav1.5 and Nav1.7) are expressed de novo in human carcinoma tissues and generally parallel the situation in vitro. Consistent with this, tissue electrolyte (sodium) levels, quantified by clinical imaging, are significantly higher in cancer vs. matched non-cancer tissues. These are early events in the acquisition of metastatic potential by the cancer cells. Taken together, the multi-faceted evidence suggests that the VGSC expression has clinical (diagnostic and therapeutic) potential as a prognostic marker, as well as an anti-metastatic target. The distinct advantages offered by the VGSC include especially (1) its embryonic nature, demonstrated most clearly for the predominant neonatal Nav1.5 expression in breast and colon cancer, and (2) the specifically druggable persistent current that VGSCs develop under hypoxic conditions, as in growing tumours, which promotes invasiveness and metastasis.

8.
J Cell Physiol ; 234(12): 23066-23081, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31222761

RESUMO

The MDA-MB-231 cell line was used as a model of triple negative breast cancer to investigate the interaction of ß-adrenergic receptor (ß-AR) and voltage-gated sodium channel (VGSC). There was significant (86%) overlap in their expression. Short-term (acute) application of the ß-AR antagonist propranolol (25 µM) led to reduction of peak current and quickening of current inactivation (the latter occurred only in 5% fetal bovine serum). Long-term (48 hr) incubation with propranolol (25 µM) resulted in several changes in VGSC characteristics: shifts in (a) current-voltage relationship and (b) steady-state inactivation, both to more negative potentials and (c) the slowing of recovery from inactivation. We then investigated the effects of propranolol and ranolazine, a blocker of VGSC activity, alone and in combination, on lateral motility and Matrigel invasion. These assays were carried out under hypoxic conditions more representative of tumor progression. Propranolol (2.5 and 25 µM) and ranolazine (5 µM), and their combination inhibited lateral motility. Also, propranolol (25 µM) and ranolazine (5 µM), and their combination inhibited invasion. However, no synergy was observed in the pharmacological combinations for both assays. Propranolol also significantly decreased total neonatal Nav1.5 protein expression, the predominant VGSC subtype expressed in these cells. We conclude (a) that ß-AR and VGSC are functionally coupled in MDA-MB-231 cells; (b) that propranolol has direct blocking action on the VGSC; (c) that the action of propranolol is modulated by serum; and (d) that the antimetastatic cellular effects of propranolol and ranolazine are not additive.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/genética , Propranolol/farmacologia , Ranolazina/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/farmacologia , Combinação de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Laminina/farmacologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteoglicanas/farmacologia , Receptores Adrenérgicos beta/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Hipóxia Tumoral
9.
Prostate Cancer Prostatic Dis ; 22(4): 569-579, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30894674

RESUMO

BACKGROUND: Voltage-gated Na+ channels (VGSCs) are functionally upregulated in rat and human prostate cancer (PCa) where channel activity promotes cellular invasiveness in vitro and metastasis in vivo. Ranolazine is a clinically used VGSC inhibitor/anti-anginal drug, which has been shown previously to inhibit breast cancer metastasis in vivo. METHODS: Using the Dunning model of rat PCa, the effect of ranolazine applied systemically (by gavage) was tested on the development of primary tumours and metastases following subcutaneous inoculation of Mat-LyLu cells into Copenhagen rats. In addition, human prostate tissue microarrays were used to determine VGSC protein expression in cancerous versus non-cancerous tissue. Several public databases were searched to compare Nav1.7/ SCN9A expression levels in 'normal' vs. PCa tissues. RESULTS: Ranolazine (2.5 and 5 µM) decreased the number of lung metastases by up to 63%. In contrast, primary tumourigenesis was not affected. Ranolazine also reduced the percentage of cells in the metastases expressing Nav1.7, the main VGSC subtype expressed in PCa, but the expression level was higher. In prostate tissue microarrays, VGSC protein expression was significantly higher in cancerous versus non-cancerous tissue. There was no correlation between the VGSC expression and either prostate-specific antigen or Gleason score. In public databases, little information could be found on Nav1.7 protein expression in PCa. In addition, the database information on Nav1.7 mRNA (SCN9A) expression levels did not correlate with previously reported upregulation in PCa cells and tissues. CONCLUSIONS: The main conclusions were (i) ranolazine inhibited metastasis and (ii) it was a subpopulation of cells with particularly high levels of Nav1.7 protein that reached the metastatic sites. These data extend earlier studies and suggest that Nav1.7 expression could serve as a functional biomarker of metastatic PCa and that VGSC blockers may be useful as anti-metastatic agents.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Pulmonares/prevenção & controle , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Ranolazina/administração & dosagem , Bloqueadores do Canal de Sódio Disparado por Voltagem/administração & dosagem , Animais , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/secundário , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia , Ratos , Análise Serial de Tecidos
10.
Bioelectricity ; 1(3): 139-147, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471816

RESUMO

Background: Voltage-gated sodium channels are functionally expressed in human carcinomas. In breast and colon cancers, the neonatal splice variant of Nav1.5 (nNav1.5) is dominant. This differs from the adult (aNav1.5) by several amino acids, including an outer charge reversal (residue-211): negatively charged aspartate (aNav1.5) versus positively charged lysine (nNav1.5). Thus, nNav1.5 and aNav1.5 may respond to extracellular charges differently. Materials and Methods: We used whole-cell patch-clamp recording to compare the electrophysiological effects of the monovalent cation hydrogen (H+) on nNav1.5 and aNav1.5 expressed stably in EBNA cells. Results: Increasing the H+ concentration (acidifying pH) reduced channel conductance and inhibited peak currents. Also, there was a positive shift in the voltage dependence of activation. These changes were significantly smaller for nNav1.5, compared with aNav1.5. Conclusions: nNav1.5 was more resistant to the suppressive effects of acidification compared with aNav1.5. Thus, nNav1.5 may have an advantage in promoting metastasis from the acidified tumor microenvironment.

11.
Bioelectricity ; 1(3): 148-157, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471817

RESUMO

Background: A "neonatal" splice-form of the voltage-gated sodium channel Nav1.5 is functionally expressed in human cancers and potentiates metastatic cell behaviors. Splicing causes the replacement of 7 amino acids, including a negatively charged aspartate211 in the "adult" Nav1.5 (aNav1.5) to a positively charged lysine in the "neonatal" (nNav1.5). These changes occur in the region surrounding the DI:S3-S4 extracellular linker. The splice variants respond differently to changes in extracellular H+ and this could be of pathophysiological significance. However, how the two differentially charged splice variants would react to cations of higher valency is not known. Materials and Methods: We used patch-clamp recording to compare the electrophysiological effects of Cd2+ and Gd3+ on "adult" and "neonatal" Nav1.5 expressed stably in EBNA-293 cells. Several parameters were determined for the two channels and statistically compared. Results: Both cations inhibited peak I Na through reducing G max and induced a positive shift in the voltage range of activation. However, unlike Gd3+, Cd2+ had only a weak effect on voltage dependence of activation, and no effect on voltage dependence of inactivation, recovery from inactivation, or the kinetics of activation/inactivation. Conclusions: The electrophysiological effects of Cd2+ and Gd3+ studied were essentially the same for "neonatal" and "adult" Nav1.5, although these splice variants possess differences in their external charges. In contrast, the effects of H+ were shown earlier to be significantly differential. Taken together, these results suggest that limited adjustment of the charged structure of pharmacological agents could enable selective targeting of neonatal Nav1.5 associated with several cancers.

12.
J Cell Physiol ; 234(5): 6582-6593, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341901

RESUMO

Functional expression of voltage-gated Na+ channels (VGSCs) occurs in human carcinomas and promotes invasiveness in vitro and metastasis in vivo. Both neonatal and adult forms of Nav1.5 (nNav1.5 and aNav1.5, respectively) have been reported to be expressed at messenger RNA (mRNA) level in colorectal cancer (CRCa) cells. Here, three CRCa cell lines (HT29, HCT116 and SW620) were studied and found to express nNav1.5 mRNA and protein. In SW620 cells, adopted as a model, effects of gene silencing (by several small interfering RNAs [siRNAs]) selectively targeting nNav1.5 or aNav1.5 were determined on (a) channel activity and (b) invasiveness in vitro. Silencing nNav1.5 made the currents more "adult-like" and suppressed invasion by up to 73%. Importantly, subsequent application of the highly specific, general VGSC blocker, tetrodotoxin (TTX), had no further effect. Conversely, silencing aNav1.5 made the currents more "neonatal-like" but suppressed invasion by only 17% and TTX still induced a significant effect. Hypoxia increased invasiveness and this was also blocked completely by siRNA targeting nNav1.5. The effect of hypoxia was suppressed dose dependently by ranolazine, but its effect was lost in cells pretreated with nNav1.5-siRNA. We conclude that (a) functional nNav1.5 expression is common to human CRCa cells, (b) hypoxia increases the invasiveness of SW620 cells, (c) the VGSC-dependent invasiveness is driven predominantly by nNav1.5 under both normoxic and hypoxic conditions and (d) the hypoxia-induced increase in invasiveness is likely to be mediated by the persistent current component of nNav1.5.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Invasividade Neoplásica/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hipóxia/tratamento farmacológico , RNA Interferente Pequeno/genética , Tetrodotoxina/farmacologia
13.
Pathol Res Pract ; 213(8): 900-907, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28698102

RESUMO

Expression of the neonatal splice variant of the voltage-gated sodium channel α-subunit (VGSC) subtype Nav1.5 (nNav1.5), encoded by the gene SCN5A, was shown earlier to be upregulated in human breast cancer (BCa), both in vitro and in vivo. Channel activity promoted BCa invasion of Matrigel®in vitro and metastasis in vivo. Consequently, expression of nNav1.5 has been proposed as a functional biomarker of BCa cells with metastatic potential. Here, we have determined immunohistochemically both nNav1.5 and total VGSC (tVGSC) protein expression in a range of adult human tissues. Some VGSC protein was expressed in normal colon, small intestine, stomach, prostate, bladder and breast. As expected, high levels of VGSC protein were expressed in brain, skeletal muscle and cardiac muscle. On the other hand, nNav1.5 protein was not expressed in any of the normal tissues tested except breast where a low-level of protein was present. In comparison to normal breast, nNav1.5 protein expression in BCa was consistently widespread and occurred at a significantly higher level. We also questioned whether there was any relationship between the nNav1.5 protein expression and the estrogen receptor (ERα) status of BCa and obtained the following results. First, all cases lacking nNav1.5 were positive for ERα. Second, in all ERα-negative tissues, nNav1.5 protein was expressed in plasma membrane. Third, however, in ERα-positive cases, nNav1.5 protein expression was observed in both plasma membrane and cytoplasm. In conclusion, nNav1.5 protein has a restricted expression pattern among human tissues. High level expression occurs in BCa and associates with ERα status. These results further support the proposition that nNav1.5 is a novel biomarker of metastatic BCa.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/biossíntese , Neoplasias da Mama/metabolismo , Feminino , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.5/análise , Isoformas de Proteínas/análise , Isoformas de Proteínas/biossíntese
14.
Eur Biophys J ; 45(7): 735-748, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27665102

RESUMO

The possible association of intracellular Ca2+ with metastasis in human cancer cells is poorly understood. We have studied Ca2+ signaling in human prostate and breast cancer cell lines of strongly versus weakly metastatic potential in a comparative approach. Intracellular free Ca2+ was measured using a membrane-permeant fluorescent Ca2+-indicator dye (Fluo-4 AM) and confocal microscopy. Spontaneous Ca2+ oscillations were observed in a proportion of strongly metastatic human prostate and breast cancer cells (PC-3M and MDA-MB-231, respectively). In contrast, no such oscillations were observed in weakly/non metastatic LNCaP and MCF-7 cells, although a rise in the resting Ca2+ level could be induced by applying a high-K+ solution. Various parameters of the oscillations depended on extracellular Ca2+ and voltage-gated Na+ channel activity. Treatment with either tetrodotoxin (a general blocker of voltage-gated Na+ channels) or ranolazine (a blocker of the persistent component of the channel current) suppressed the Ca2+ oscillations. It is concluded that the functional voltage-gated Na+ channel expression in strongly metastatic cancer cells makes a significant contribution to generation of oscillatory intracellular Ca2+ activity. Possible mechanisms and consequences of the Ca2+ oscillations are discussed.


Assuntos
Neoplasias da Mama/patologia , Sinalização do Cálcio , Espaço Intracelular/metabolismo , Neoplasias da Próstata/patologia , Canais de Sódio Disparados por Voltagem/metabolismo , Espaço Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Masculino , Metástase Neoplásica
15.
Eur Biophys J ; 45(7): 671-683, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27160185

RESUMO

The main aim of this study was to investigate a possible functional connection between sigma-1 receptors and voltage-gated sodium channels (VGSCs) in human breast cancer cells. The hypothesis was that sigma-1 drugs could alter the metastatic properties of breast cancer cells via the VGSC. Evidence was found for expression of sigma-1 receptor and neonatal Nav1.5 (nNav1.5) expression in both MDA-MB-231 and MDA-MB-468 cells. Sigma-1 drugs (SKF10047 and dimethyltryptamine) did not affect cell proliferation or migration but significantly reduced adhesion to the substrate. Silencing sigma-1 receptor expression by siRNA similarly reduced the adhesion. Blocking nNav1.5 activity with a polyclonal antibody (NESOpAb) targeting an extracellular region of nNav1.5 also reduced the adhesion in both cell lines. Importantly, the results of combined treatments with NESOpAb and a sigma-1 drug or sigma-1 siRNA suggested that both treatments targeted the same mechanism. The possibility was tested, therefore, that the sigma-1 receptor and the nNav1.5 channel formed a physical, functional complex. This suggestion was supported by the results of co-immunoprecipitation experiments. Furthermore, application of sigma-1 drugs to the cells reduced the surface expression of nNav1.5 protein, which could explain how sigma-1 receptor activation could alter the metastatic behaviour of breast cancer cells. Overall, these results are consistent with the idea of a sigma-1 protein behaving like either a "chaperone" or a regulatory subunit associated with nNav1.5.


Assuntos
Neoplasias da Mama/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Receptores sigma/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Inativação Gênica , Humanos , Recém-Nascido , Metástase Neoplásica , Receptores sigma/deficiência , Receptores sigma/genética , Receptor Sigma-1
16.
Int J Biochem Cell Biol ; 71: 111-118, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26724521

RESUMO

Caffeic acid phenethyl ester, derived from natural propolis, has been reported to have anti-cancer properties. Voltage-gated sodium channels are upregulated in many cancers where they promote metastatic cell behaviours, including invasiveness. We found that micromolar concentrations of caffeic acid phenethyl ester blocked voltage-gated sodium channel activity in several invasive cell lines from different cancers, including breast (MDA-MB-231 and MDA-MB-468), colon (SW620) and non-small cell lung cancer (H460). In the MDA-MB-231 cell line, which was adopted as a 'model', long-term (48 h) treatment with 18 µM caffeic acid phenethyl ester reduced the peak current density by 91% and shifted steady-state inactivation to more hyperpolarized potentials and slowed recovery from inactivation. The effects of long-term treatment were also dose-dependent, 1 µM caffeic acid phenethyl ester reducing current density by only 65%. The effects of caffeic acid phenethyl ester on metastatic cell behaviours were tested on the MDA-MB-231 cell line at a working concentration (1 µM) that did not affect proliferative activity. Lateral motility and Matrigel invasion were reduced by up to 14% and 51%, respectively. Co-treatment of caffeic acid phenethyl ester with tetrodotoxin suggested that the voltage-gated sodium channel inhibition played a significant intermediary role in these effects. We conclude, first, that caffeic acid phenethyl ester does possess anti-metastatic properties. Second, the voltage-gated sodium channels, commonly expressed in strongly metastatic cancers, are a novel target for caffeic acid phenethyl ester. Third, more generally, ion channel inhibition can be a significant mode of action of nutraceutical compounds.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Ácidos Cafeicos/farmacologia , Álcool Feniletílico/análogos & derivados , Canais de Sódio Disparados por Voltagem/metabolismo , Linhagem Celular Tumoral , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Metástase Neoplásica , Álcool Feniletílico/farmacologia
17.
Philos Trans R Soc Lond B Biol Sci ; 369(1638): 20130105, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24493753

RESUMO

Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na(+) channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Homeostase/fisiologia , Modelos Biológicos , Metástase Neoplásica/fisiopatologia , Neoplasias/fisiopatologia , Canais de Sódio Disparados por Voltagem/metabolismo , Hormônios/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/metabolismo
18.
Eur J Cancer ; 49(10): 2331-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23683551

RESUMO

Ovarian cancer is associated with limited overall survival, due to problems in early detection and therapy. Membrane ion channels have been proposed to play a significant, concerted role in the cancer process, from initial proliferation to metastasis, and promise to be early, functional biomarkers. We review the evidence for ion channel and aquaporin expression and functioning in human ovarian cancer cells and tissues. In vitro, K(+) channels, mainly voltage-gated, including Ca(2+)-activated channels, have been found to control the cell cycle, as in other cancers. Voltage-gated, volume-regulated and intracellular Cl(-) channels have been detected in vitro and in vivo and shown to be involved in proliferation, adhesion and invasion. Evidence for 'transient receptor potential', voltage-gated sodium and calcium channels, which have been shown to contribute to pathogenesis of other carcinomas, is also emerging in ovarian cancer. Aquaporins may be involved in cell growth, migration and formation of ascites via increased water permeability of micro-vessels. It is concluded that functional expression of ion channels and their regulation by steroid hormones and growth factors are an integral part of ovarian cancer development and progression. Furthermore, ion channels may be involved in multidrug resistance, commonly associated with treatment of ovarian cancer. We propose that ion channel studies can facilitate our understanding of the pathobiology of ovarian cancer and, ultimately, can serve as viable novel targets for its clinical management.


Assuntos
Aquaporinas/metabolismo , Canais Iônicos/metabolismo , Neoplasias Ovarianas/metabolismo , Antineoplásicos/uso terapêutico , Aquaporinas/antagonistas & inibidores , Aquaporinas/genética , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética
19.
J Biol Chem ; 286(19): 16846-60, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21385874

RESUMO

Voltage-gated sodium channel (VGSC) activity has previously been reported in endothelial cells (ECs). However, the exact isoforms of VGSCs present, their mode(s) of action, and potential role(s) in angiogenesis have not been investigated. The main aims of this study were to determine the role of VGSC activity in angiogenic functions and to elucidate the potentially associated signaling mechanisms using human umbilical vein endothelial cells (HUVECs) as a model system. Real-time PCR showed that the primary functional VGSC α- and ß-subunit isoforms in HUVECs were Nav1.5, Nav1.7, VGSCß1, and VGSCß3. Western blots verified that VGSCα proteins were expressed in HUVECs, and immunohistochemistry revealed VGSCα expression in mouse aortic ECs in vivo. Electrophysiological recordings showed that the channels were functional and suppressed by tetrodotoxin (TTX). VGSC activity modulated the following angiogenic properties of HUVECs: VEGF-induced proliferation or chemotaxis, tubular differentiation, and substrate adhesion. Interestingly, different aspects of angiogenesis were controlled by the different VGSC isoforms based on TTX sensitivity and effects of siRNA-mediated gene silencing. Additionally, we show for the first time that TTX-resistant (TTX-R) VGSCs (Nav1.5) potentiate VEGF-induced ERK1/2 activation through the PKCα-B-RAF signaling axis. We postulate that this potentiation occurs through modulation of VEGF-induced HUVEC depolarization and [Ca(2+)](i). We conclude that VGSCs regulate multiple angiogenic functions and VEGF signaling in HUVECs. Our results imply that targeting VGSC expression/activity could be a novel strategy for controlling angiogenesis.


Assuntos
Células Endoteliais/citologia , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Aorta/citologia , Cálcio/química , Diferenciação Celular , Eletrofisiologia/métodos , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Isoformas de Proteínas , RNA Interferente Pequeno/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia
20.
EMBO Rep ; 11(6): 431-7, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20448665

RESUMO

The prostate is a highly specialized mammalian organ that produces and releases large amounts of citrate. However, the citrate release mechanism is not known. Here, we present the results of molecular cloning of a citrate transporter from human normal prostate epithelial PNT2-C2 cells shown previously to express such a mechanism. By using rapid amplification of cDNA ends PCR, we determined that the prostatic carrier is an isoform of the mitochondrial transporter SLC25A1 with a different first exon. We confirmed the functionality of the clone by expressing it in human embryonic kidney cells and performing radiotracer experiments and whole-cell patch-clamp recordings. By using short interfering RNAs targeting different parts of the sequence, we confirmed that the cloned protein is the main prostatic transporter responsible for citrate release. We also produced a specific antibody and localized the cloned transporter protein to the plasma membrane of the cells. By using the same antibody, we have shown that the cloned transporter is expressed in non-malignant human tissues.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Evolução Molecular , Próstata/citologia , Sequência de Aminoácidos , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico , Proteínas de Transporte/química , Linhagem Celular , Ácido Cítrico/metabolismo , Células Epiteliais/citologia , Inativação Gênica , Humanos , Imuno-Histoquímica , Íons/metabolismo , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Transportadores de Ânions Orgânicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA