RESUMO
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an irreversible disorder with a poor prognosis. The incomplete understanding of IPF pathogenesis and the lack of accurate animal models is limiting the development of effective treatments. Thus, the selection of clinically relevant animal models endowed with similarities with the human disease in terms of lung anatomy, cell biology, pathways involved and genetics is essential. The bleomycin (BLM) intratracheal murine model is the most commonly used preclinical assay to evaluate new potential therapies for IPF. Here, we present the findings derived from an integrated histomorphometric and transcriptomic analysis to investigate the development of lung fibrosis in a time-course study in a BLM rat model and to evaluate its translational value in relation to IPF. METHODS: Rats were intratracheally injected with a double dose of BLM (days 0-4) and sacrificed at days 7, 14, 21, 28 and 56. Histomorphometric analysis of lung fibrosis was performed on left lung sections. Transcriptome profiling by RNAseq was performed on the right lung lobes and results were compared with nine independent human gene-expression IPF studies. RESULTS: The histomorphometric and transcriptomic analyses provided a detailed overview in terms of temporal gene-expression regulation during the establishment and repair of the fibrotic lesions. Moreover, the transcriptomic analysis identified three clusters of differentially coregulated genes whose expression was modulated in a time-dependent manner in response to BLM. One of these clusters, centred on extracellular matrix (ECM)-related process, was significantly correlated with histological parameters and gene sets derived from human IPF studies. CONCLUSIONS: The model of lung fibrosis presented in this study lends itself as a valuable tool for preclinical efficacy evaluation of new potential drug candidates. The main finding was the identification of a group of persistently dysregulated genes, mostly related to ECM homoeostasis, which are shared with human IPF.
Assuntos
Fibrose Pulmonar Idiopática , Humanos , Ratos , Camundongos , Animais , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Homeostase , Perfilação da Expressão Gênica , Bleomicina , Matriz Extracelular/genéticaRESUMO
BACKGROUND: Malignant pleural mesothelioma is a pathology with no effective therapy and a poor prognosis. Our previous study demonstrated an in vitro inhibitory effect on mesothelioma cell lines of both the lysate and secretome of adipose tissue-derived Mesenchymal Stromal Cells. The inhibitory activity on tumor growth has been demonstrated also in vivo: five million Mesenchymal Stromal Cells, injected "in situ", produced a significant therapeutic efficacy against MSTO-211H xenograft equivalent to that observed after the systemic administration of paclitaxel. OBJECTIVE: The objective of this study is to evaluate the efficacy of low amount (half a million) Mesenchymal Stromal Cells and micro-fragmented adipose tissues (the biological tissue from which the Mesenchymal Stromal Cells were isolated) on mesothelioma cells growth. METHODS: Tumor cells growth inhibition was evaluated in vitro and in a xenograft model of mesothelioma. RESULTS: The inhibitory effect of micro-fragmented fat from adipose-tissue has been firstly confirmed in vitro on MSTO-211H cell growth. Then the efficacy against the growth of mesothelioma xenografts in mice of both micro-fragmented fat and low amount of Mesenchymal Stromal Cells has been evaluated. Our results confirmed that both Mesenchymal Stromal Cells and micro-fragmented fat, injected "in situ", did not stimulate mesothelioma cell growth. By contrast, micro-fragmented fat produced a significant inhibition of tumor growth and progression, comparable to that observed by the treatment with paclitaxel. Low amount of Mesenchymal Stromal Cells exerted only a little anticancer activity. CONCLUSION: Micro-fragmented fat inhibited mesothelioma cell proliferation in vitro and exerted a significant control of the mesothelioma xenograft growth in vivo.
Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Animais , Camundongos , Xenoenxertos , Linhagem Celular Tumoral , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , Paclitaxel/farmacologiaRESUMO
The mechanisms underlying the success of propranolol in the treatment of infantile hemangioma (IH) remain elusive and do not fully explain the rapid regression of hemangiomatous lesions following drug administration. As autophagy is critically implicated in vascular homeostasis, we determined whether ß-blockers trigger the autophagic flux on infantile hemangioma-derived endothelial cells (Hem-ECs) in vitro. MATERIAL AND METHODS: Fresh tissue specimens, surgically removed for therapeutic purpose to seven children affected by proliferative IH, were subjected to enzymatic digestion. Cells were sorted with anti-human CD31 immunolabeled magnetic microbeads. Following phenotypic characterization, expanded Hem-ECs, at P2 to P6, were exposed to different concentrations (50 µM to 150 µM) of propranolol, atenolol or metoprolol alone and in combination with the autophagy inhibitor Bafilomycin A1. Rapamycin, a potent inducer of autophagy, was also used as control. Autophagy was assessed by Lysotracker Red staining, western blot analysis of LC3BII/LC3BI and p62, and morphologically by transmission electron microscopy. RESULTS: Hem-ECs treated with either propranolol, atenolol or metoprolol displayed positive LysoTracker Red staining. Increased LC3BII/LC3BI ratio, as well as p62 modulation, were documented in ß-blockers treated Hem-ECs. Abundant autophagic vacuoles and multilamellar bodies characterized the cytoplasmic ultrastructural features of autophagy in cultured Hem-ECs exposed in vitro to ß-blocking agents. Importantly, similar biochemical and morphologic evidence of autophagy were observed following rapamycin while Bafilomycin A1 significantly prevented the autophagic flux promoted by ß-blockers in Hem-ECs. CONCLUSION: Our data suggest that autophagy may be ascribed among the mechanisms of action of ß-blockers suggesting new mechanistic insights on the potential therapeutic application of this class of drugs in pathologic conditions involving uncontrolled angiogenesis.
Assuntos
Hemangioma , Propranolol , Antagonistas Adrenérgicos beta/farmacologia , Aminas , Atenolol/farmacologia , Atenolol/uso terapêutico , Autofagia , Proliferação de Células , Criança , Células Endoteliais , Hemangioma/patologia , Humanos , Macrolídeos , Metoprolol/uso terapêutico , Propranolol/farmacologia , Propranolol/uso terapêutico , Sirolimo/farmacologiaRESUMO
BACKGROUND: The aim of the present study was to dissect the clinical outcome of GB patients through the integration of molecular, immunophenotypic and MR imaging features. METHODS: We enrolled 57 histologically proven and molecularly tested GB patients (5.3% IDH-1 mutant). Two-Dimensional Free ROI on the Biggest Enhancing Tumoral Diameter (TDFRBETD) acquired by MRI sequences were used to perform a manual evaluation of multiple quantitative variables, among which we selected: SD Fluid Attenuated Inversion Recovery (FLAIR), SD and mean Apparent Diffusion Coefficient (ADC). Characterization of the Tumor Immune Microenvironment (TIME) involved the immunohistochemical analysis of PD-L1, and number and distribution of CD3+, CD4+, CD8+ Tumor Infiltrating Lymphocytes (TILs) and CD163+ Tumor Associated Macrophages (TAMs), focusing on immune-vascular localization. Genetic, MR imaging and TIME descriptors were correlated with overall survival (OS). RESULTS: MGMT methylation was associated with a significantly prolonged OS (median OS = 20 months), while no impact of p53 and EGFR status was apparent. GB cases with high mean ADC at MRI, indicative of low cellularity and soft consistency, exhibited increased OS (median OS = 24 months). PD-L1 and the overall number of TILs and CD163+TAMs had a marginal impact on patient outcome. Conversely, the density of vascular-associated (V) CD4+ lymphocytes emerged as the most significant prognostic factor (median OS = 23 months in V-CD4high vs. 13 months in V-CD4low, p = 0.015). High V-CD4+TILs also characterized TIME of MGMTmeth GB, while p53mut appeared to condition a desert immune background. When individual genetic (MGMTunmeth), MR imaging (mean ADClow) and TIME (V-CD4+TILslow) negative predictors were combined, median OS was 21 months (95% CI, 0-47.37) in patients displaying 0-1 risk factor and 13 months (95% CI 7.22-19.22) in the presence of 2-3 risk factors (p = 0.010, HR = 3.39, 95% CI 1.26-9.09). CONCLUSION: Interlacing MRI-immune-genetic features may provide highly significant risk-stratification models in GB patients.
RESUMO
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease associated with sudden cardiac death and cardiac fibro-fatty replacement. Over the last years, several works have demonstrated that different epigenetic enzymes can affect not only gene expression changes in cardiac diseases but also cellular metabolism. Specifically, the histone acetyltransferase GCN5 is known to facilitate adipogenesis and modulate cardiac metabolism in heart failure. Our group previously demonstrated that human primary cardiac stromal cells (CStCs) contribute to adipogenesis in the ACM pathology. Thus, this study aims to evaluate the role of GCN5 in ACM intracellular lipid accumulation. To do so, CStCs were obtained from right ventricle biopsies of ACM patients and from samples of healthy cadaveric donors (CTR). GCN5 expression was increased both in ex vivo and in vitro ACM samples compared to CTR. When GCN5 expression was silenced or pharmacologically inhibited by the administration of MB-3, we observed a reduction in lipid accumulation and a mitigation of reactive oxygen species (ROS) production in ACM CStCs. In agreement, transcriptome analysis revealed that the presence of MB-3 modified the expression of pathways related to cellular redox balance. Altogether, our findings suggest that GCN5 inhibition reduces fat accumulation in ACM CStCs, partially by modulating intracellular redox balance pathways.
Assuntos
Displasia Arritmogênica Ventricular Direita , Adipogenia/fisiologia , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Morte Súbita Cardíaca/patologia , Humanos , Lipídeos , Células Estromais/metabolismoRESUMO
INTRODUCTION: ALK tyrosine kinase inhibitors (TKIs) are the standard treatment for advanced ALK-positive NSCLC. Nevertheless, drug resistance inevitably occurs. Here, we report a case of a patient with metastatic ALK-positive lung adenocarcinoma with an impressive resistance to sequential treatment with ALK TKIs mediated by YES1 and MYC amplification in a contest of epithelial-to-mesenchymal transition and high progressive chromosomal instability. METHODS: The patient received, after chemotherapy and 7 months of crizotinib, brigatinib and lorlatinib with no clinical benefit to both treatments. A study of resistance mechanisms was performed with whole exome sequencing on different biological samples; primary cell lines were established from pleural effusion after lorlatinib progression. RESULTS: At whole exome sequencing analysis, YES1 and MYC amplifications were observed both in the pericardial biopsy and the pleural effusion samples collected at brigatinib and lorlatinib progression, respectively. Increasing chromosomal instability from diagnostic biopsy to pleural effusion was also observed. The addition of dasatinib to brigatinib or lorlatinib restored the sensitivity in primary cell lines; data were confirmed also in H3122_ALK-positive model overexpressing both YES1 and MYC. CONCLUSIONS: In conclusion, YES1 and MYC amplifications are candidates to justify a rapid acquired resistance to crizotinib entailing primary brigatinib and lorlatinib resistance. In this context, a combination strategy of ALK TKI with dasatinib could be effective to overcome a rapid resistance.
RESUMO
Radiomics has emerged as a noninvasive tool endowed with the potential to intercept tumor characteristics thereby predicting clinical outcome. In a recent study on resected non-small cell lung cancer (NSCLC), we identified highly prognostic computed tomography (CT) -derived radiomic features (RFs), which in turn were able to discriminate hot from cold tumor immune microenvironment (TIME). We aimed at validating a radiomic model capable of dissecting specific TIME profiles bearing prognostic power in resected NSCLC. The validation cohort included 31 radically resected NSCLCs clinicopathologically matched with the training set (n = 69). TIME was classified in hot and cold according to a multiparametric immunohistochemical analysis involving PD-L1 score and incidence of immune effector phenotypes among tumor infiltrating lymphocytes (TILs). High- throughput radiomic features (n = 841) extracted from CT images were correlated to TIME parameters to ultimately define prognostic classes. We confirmed PD-1 to CD8 ratio as best predictor of clinical outcome among TIME characteristics. Significantly prolonged overall survival (OS) was observed in patients carrying hot (median OS not reached) vs cold (median OS 22 months; hazard ratio 0.28, 95% confidence interval 0.09 -0.82; p = 0.015) immune background, thus validating the prognostic impact of these two TIME categories in resected NSCLC. Importantly, in the validation setting, three out of eight previously identified RFs sharply distinguishing hot from cold TIME were endorsed. Among signature-related RFs, Wavelet-HHH_gldm_HighGrayLevelEmphasis highly performed as descriptor of hot immune contexture (area under the receiver operating characteristic curve 0.94, 95% confidence interval 0.81 -1.00; p = 0.01). Based on our findings, Radiomics may decipher specific TIME profiles providing a noninvasive prognostic approach in resected NSCLC and an exploitable predictive strategy in advanced cases.
Assuntos
Antígeno B7-H1/genética , Antígenos CD8/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Microambiente Tumoral/genética , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Intervalo Livre de Doença , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/metabolismo , Pulmão/patologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Estadiamento de Neoplasias , Prognóstico , Tomografia Computadorizada por Raios X , Microambiente Tumoral/imunologiaRESUMO
BACKGROUND: Malignant Pleural Mesothelioma (MPM) is an aggressive tumor that has a significant incidence related to asbestos exposure with no effective therapy and poor prognosis. The role of mesenchymal stromal cells (MSCs) in cancer is controversial due to their opposite effects on tumor growth and in particular, only a few data are reported on MSCs and MPM. METHODS: We investigated the in vitro efficacy of adipose tissue-derived MSCs, their lysates and secretome against different MPM cell lines. After large-scale production of MSCs in a bioreactor, their efficacy was also evaluated on a human MPM xenograft in mice. RESULTS: MSCs, their lysate and secretome inhibited MPM cell proliferation in vitro with S or G0/G1 arrest of the cell cycle, respectively. MSC lysate induced cell death by apoptosis. The efficacy of MSC was confirmed in vivo by a significant inhibition of tumor growth, similar to that produced by systemic administration of paclitaxel. Interestingly, no tumor progression was observed after the last MSC treatment, while tumors started to grow again after stopping chemotherapeutic treatment. CONCLUSIONS: These data demonstrated for the first time that MSCs, both through paracrine and cell-to-cell interaction mechanisms, induced a significant inhibition of human mesothelioma growth. Since the prognosis for MPM patients is poor and the options of care are limited to chemotherapy, MSCs could provide a potential new therapeutic approach for this malignancy.
Assuntos
Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Mesotelioma Maligno/patologia , Adolescente , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Adulto JovemRESUMO
The immune regulation of cancer growth and regression has been underscored by the recent success of immunotherapy. The possibility that immune microenvironmental factors may impact on clinical outcome and treatment response still requires intense investigations. Hereby, supporting data of the research article "Integrated CT Imaging and Tissue Immune Features Disclose a Radio-Immune Signature with High Prognostic Impact on Surgically Resected NSCLC" [1], are presented. With the ultimate aim to provide non-invasive prognostic scores, we report on our approach to correlate different Tumor Immune Microenvironment (TIME) profiles with CT imaging-derived qualitative (semantic, CT-SFs) and quantitative (radiomic, CT-RFs) features in a cohort of 60 surgically resected NSCLC. The renowned characterization of TIME, essentially based on the score evaluation of Programme Death Ligand-1 (PD-L1) and Tumor Infiltrating Lymphocytes (TILs), was implemented here by the assessment of effector and suppressor phenotypes including the analysis of Programme Death receptor 1 (PD-1). Thus, we defined two main TIME categories: hot inflamed (PD-L1high, CD8/CD3high and PD-1/CD8low) as opposed to cold inactive (PD-L1low, CD8/CD3lowand PD-1/CD8high). Importantly, as reported in the extended publication [1], these distinctive immune contextures identified different prognostic classes and were decoded by radiomics. To corroborate our radiomic approach, a comparative estimation of CT-RFs extracted from 60 NSCLC and 13 non neoplastic tissues was undertaken, documenting high discrimination ability. Moreover, we tested the potential association of qualitative radiologic features with clinico-pathological and TIME parameters. Taken together, our findings suggest that CT-SFs and CT-RFs may underlay specific patterns of lung cancer.
RESUMO
OBJECTIVES: Qualitative and quantitative CT imaging features might intercept the multifaceted tumor immune microenvironment (TIME), providing a non-invasive approach to design new prognostic models in NSCLC patients. MATERIALS AND METHODS: Our study population consisted of 100 surgically resected NSCLC patients among which 31 served as a validation cohort for quantitative image analysis. TIME was classified according to PD-L1 expression and the magnitude of Tumor Infiltrating Lymphocytes (TILs) and further defined as hot or cold by the tissue analysis of effector (CD8-to-CD3high/PD-1-to-CD8low) or inert (CD8-to-CD3low/PD-1-to-CD8high) phenotypes. CT datasets acted as source for qualitative (semantic, CT-SFs) and quantitative (radiomic, CT-RFs) features which were correlated with clinico-pathological and TIME profiles to determine their impact on survival outcome. RESULTS: Specific CT-SFs (texture [TXT], effect [EFC] and margins [MRG]) strongly correlated to PD-L1 and TILs status and showed significant impact on survival outcome (TXT, HR:3.39, 95 % CI 1.12-10-27, Pâ¯<â¯0.05; EFC, HR:0.41, 95 % CI 0.18-0.93, Pâ¯<â¯0.05; MRG, HR:1.93, 95 % CI 0.88-4.25, Pâ¯=â¯0.09). Seven CT derived radiomic features were able to sharply discriminate cases with hot (inflamed) vs cold (desert) TIME, which also exhibited opposite OS (long vs short, HR:0.09, 95 % CI 0.04-0.23, Pâ¯<â¯0.001) and DFS (long vs short, HR:0.31, 95 % CI 0.16-0.58, Pâ¯<â¯0.001). Moreover, we identified 6 prognostic radiomic features among which ClusterProminence displayed the highest statistical significance (HR:0.13, 95 % CI 0.06-0.31, Pâ¯<â¯0.001). These findings were independently validated in an additional cohort of NSCLC (HR:0.11, 95 % CI 0.03-0.40, Pâ¯=â¯0.001). Finally, in our training cohort we developed a multiparametric prognostic model, interlacing TIME and clinico-pathological characteristics with CT-SFs (ROC curve AUC:0.83, 95 % CI 0.71-0.92, Pâ¯<â¯0.001) or CT-RFs (AUC: 0.91, 95 % CI 0.83-0.99, Pâ¯<â¯0.001), which appeared to outperform pTNM staging (AUC: 0.66, 95 % CI 0.51-0.80, Pâ¯<â¯0.05) in the risk assessment of NSCLC. CONCLUSION: Higher order CT extracted features associated with specific TIME profiles may reveal a radio-immune signature with prognostic impact on resected NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Linfócitos do Interstício Tumoral , Prognóstico , Tomografia Computadorizada por Raios X , Microambiente TumoralRESUMO
The ATP-binding cassette (ABC) transporters P-glycoprotein (MDR1/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) play a crucial role in the translocation of a broad range of drugs; data about their expression and activity in lung tissue are controversial. Here, we address their expression, localization and function in EpiAirway™, a three-dimensional (3D)-model of human airways; Calu-3 cells, a representative in vitro model of bronchial epithelium, are used for comparison. Transporter expression has been evaluated with RT-qPCR and Western blot, the localization with immunocytochemistry, and the activity by measuring the apical-to-basolateral and basolateral-to-apical fluxes of specific substrates in the presence of inhibitors. EpiAirway™ and Calu-3 cells express high levels of MRP1 on the basolateral membrane, while they profoundly differ in terms of BCRP and MDR1: BCRP is detected in EpiAirway™, but not in Calu-3 cells, while MDR1 is expressed and functional only in fully-differentiated Calu-3; in EpiAirway™, MDR1 expression and activity are undetectable, consistently with the absence of the protein in specimens from human healthy bronchi. In summary, EpiAirway™ appears to be a promising tool to study the mechanisms of drug delivery in the bronchial epithelium and to clarify the role of ABC transporters in the modulation of the bioavailability of administered drugs.
Assuntos
Brônquios/metabolismo , Epitélio/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Western Blotting , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Stem cell-based therapeutics is a rapidly developing field associated with a number of clinical challenges. One such challenge lies in the implementation of methods to track stem cells and stem cell-derived cells in experimental animal models and in the living patient. Here, we provide an overview of cell tracking in the context of cardiac and neurological disease, focusing on the use of iron oxide-based particles (IOPs) visualized in vivo using magnetic resonance imaging (MRI). We discuss the types of IOPs available for such tracking, their advantages and limitations, approaches for labeling cells with IOPs, biological interactions and effects of IOPs at the molecular and cellular levels, and MRI-based and associated approaches for in vivo and histological visualization. We conclude with reviews of the literature on IOP-based cell tracking in cardiac and neurological disease, covering both preclinical and clinical studies.
Assuntos
Rastreamento de Células , Compostos Férricos/química , Cardiopatias/terapia , Imagem Molecular , Doenças do Sistema Nervoso/terapia , Células-Tronco/citologia , Animais , HumanosRESUMO
OBJECTIVES: Lymphangiogenesis plays a critical role in the immune response, tumour progression and therapy effectiveness. The aim of this study was to determine whether the interplay between the lymphatic and the blood microvasculature, tumour-infiltrating lymphocytes and the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) immune checkpoint constitutes an immune microenvironment affecting the clinical outcome of patients with non-small-cell lung cancer. METHODS: Samples from 50 squamous cell carcinomas and 42 adenocarcinomas were subjected to immunofluorescence to detect blood and lymphatic vessels. CD3pos, CD8pos and PD-1pos tumour-infiltrating lymphocytes and tumour PD-L1 expression were assessed by immunohistochemical analysis. RESULTS: Quantification of vascular structures documented a peak of lymphatics at the invasive margin together with a decreasing gradient of blood and lymphatic vessels from the peritumour area throughout the neoplastic core. Nodal involvement and pathological stage were strongly associated with vascularization, and an increased density of vessels was detected in samples with a higher incidence of tumour-infiltrating lymphocytes and a lower expression of PD-L1. Patients with a high PD-L1 to PD-1 ratio and vascular rarefaction had a gain of 10 months in overall survival compared to those with a low ratio and prominent vascularity. CONCLUSIONS: Microvessels are an essential component of the cancer immune microenvironment. The clinical impact of the PD-1/PD-L1-based immune contexture may be implemented by the assessment of microvascular density to potentially identify patients with non-small-cell lung cancer who could benefit from immunotherapy and antiangiogenic treatment.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/imunologia , Microvasos/imunologia , Microambiente Tumoral/imunologia , Idoso , Antígeno B7-H1/análise , Carcinoma Pulmonar de Células não Pequenas/patologia , Estudos de Coortes , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Masculino , Microvasos/patologia , Pessoa de Meia-Idade , Estadiamento de NeoplasiasRESUMO
Cardiovascular complications are included among the systemic effects of tyrosine kinase inhibitor (TKI)-based therapeutic strategies. To test the hypothesis that inhibition of Kit tyrosine kinase that promotes cardiac progenitor cell (CPC) survival and function may be one of the triggering mechanisms of imatinib mesylate (IM)-related cardiovascular effects, the anatomical, structural and ultrastructural changes in the heart of IM-treated rats were evaluated. Cardiac anatomy in IM-exposed rats showed a dose-dependent, restrictive type of remodeling and depressed hemodynamic performance in the absence of remarkable myocardial fibrosis. The effects of IM on rat and human CPCs were also assessed. IM induced rat CPC depletion, reduced growth and increased cell death. Similar effects were observed in CPCs isolated from human hearts. These results extend the notion that cardiovascular side effects are driven by multiple actions of IM. The identification of cellular mechanisms responsible for cardiovascular complications due to TKIs will enable future strategies aimed at preserving concomitantly cardiac integrity and anti-tumor activity of advanced cancer treatment.
Assuntos
Cardiomiopatias/induzido quimicamente , Mesilato de Imatinib/toxicidade , Miocárdio/patologia , Células-Tronco/efeitos dos fármacos , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hemodinâmica/efeitos dos fármacos , Humanos , Masculino , Miocárdio/ultraestrutura , RatosRESUMO
Purpose: The success of immune checkpoint inhibitors strengthens the notion that tumor growth and regression are immune regulated. To determine whether distinct tissue immune microenvironments differentially affect clinical outcome in non-small cell lung cancer (NSCLC), an extended analysis of PD-L1 and tumor-infiltrating lymphocytes (TIL) was performed.Experimental Design: Samples from resected adenocarcinoma (ADC 42), squamous cell carcinoma (SCC 58), and 26 advanced diseases (13 ADC and 13 SCC) treated with nivolumab were analyzed. PD-L1 expression and the incidence of CD3, CD8, CD4, PD-1, CD57, FOXP3, CD25, and Granzyme B TILs were immunohistochemically assessed.Results: PD-L1 levels inversely correlated with N involvement, although they did not show a statistically significant prognostic value in resected patients. The incidence and phenotype of TILs differed in SCC versus ADC, in which EGFR and KRAS mutations conditioned a different frequency and tissue localization of lymphocytes. NSCLC resected patients with high CD8pos lymphocytes lacking PD-1 inhibitory receptor had a longer overall survival (OS: HR = 2.268; 95% CI, 1.056-4.871, P = 0.03). PD-1-to-CD8 ratio resulted in a prognostic factor both on univariate (HR = 1.952; 95% CI, 1.34-3.12, P = 0.001) and multivariate (HR = 1.943; 95% CI, 1.38-2.86, P = 0.009) analysis. Moreover, low PD-1 incidence among CD8pos cells was a distinctive feature of nivolumab-treated patients, showing clinical benefit with a prolonged progression-free survival (PFS: HR = 4.51; 95% CI, 1.45-13.94, P = 0.004).Conclusions: In the presence of intrinsic variability in PD-L1 expression, the reservoir of PD-1-negative effector T lymphocytes provides an immune-privileged microenvironment with a positive impact on survival of patients with resected disease and response to immunotherapy in advanced NSCLC. Clin Cancer Res; 24(2); 407-19. ©2017 AACR.
Assuntos
Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Receptor de Morte Celular Programada 1/genética , Microambiente Tumoral , Idoso , Biomarcadores Tumorais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos ProporcionaisRESUMO
Background: Little information is currently available concerning the relative contribution of cardiac parenchymal and stromal cells in the activation of the pro-inflammatory signal cascade, at the initial stages of diabetes. Similarly, the effects of early resveratrol (RSV) treatment on the negative impact of diabetes on the different myocardial cell compartments remain to be defined. Methods: In vitro challenge of neonatal cardiomyocytes and fibroblasts to high glucose and in vivo/ex vivo experiments on a rat model of Streptozotocin-induced diabetes were used to specifically address these issues. Results: In vitro data indicated that, besides cardiomyocytes, neonatal fibroblasts contribute to generating initial changes in the myocardial environment, in terms of pro-inflammatory cytokine expression. These findings were mostly confirmed at the myocardial tissue level in diabetic rats, after three weeks of hyperglycemia. Specifically, monocyte chemoattractant protein-1 and Fractalkine were up-regulated and initial abnormalities in cardiomyocyte contractility occurred. At later stages of diabetes, a selective enhancement of pro-inflammatory macrophage M1 phenotype and a parallel reduction of anti-inflammatory macrophage M2 phenotype were associated with a marked disorganization of cardiomyocyte ultrastructural properties. RSV treatment inhibited pro-inflammatory cytokine production, leading to a recovery of cardiomyocyte contractile efficiency and a reduced inflammatory cell recruitment. Conclusion: Early RSV administration could inhibit the pro-inflammatory diabetic milieu sustained by different cardiac cell types.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Diabetes Mellitus Experimental/patologia , Inflamação/patologia , Estilbenos/farmacologia , Células Estromais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Macrófagos , Masculino , Miocárdio/ultraestrutura , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar , ResveratrolRESUMO
A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future.
Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Esferoides Celulares/citologia , Células Tumorais Cultivadas/citologia , Fenômenos Biofísicos , Linhagem Celular Tumoral , Simulação por Computador , Desenho de Equipamento , Humanos , Hidrodinâmica , Microscopia Eletrônica de Transmissão , Modelos BiológicosRESUMO
INTRODUCTION: The exclusion of circulating tumor cells (CTCs) that have lost epithelial antigens during the epithelial-to-mesenchymal transition (EMT) process by using Epithelial Cell Adhesion Molecule (EpCAM) based capture methods is still a matter of debate. In this study, cells obtained after depletion procedure from blood samples of squamous cell lung cancer (SQCLC) patients were identified based on morphology and characterized with the combination of FISH assessment and immunophenotypic profile. MATERIALS AND METHODS: Five mL blood samples, collected from 55 advanced SQCLC patients, were analyzed by a non-EpCAM-based capture method. After depletion of leukocytes and erythroid cells, the negative fraction was characterized by both FISH using a fibroblast growth factor receptor 1 (FGFR1) probe and by immunocytochemistry. Thirty healthy donors were also tested. RESULTS: Based on morphology (nuclear dimension ≥10 µm, shape and hypercromatic aspect) suspicious circulating cells clearly distinguishable from contaminant leukocytes were observed in 49/55 (89%) SQCLC patients. Thirty-four of the 44 (77%) samples evaluable for FGFR1 FISH showed ≥ 6 FGFR1 gene copy number on average per cell. Vimentin expression involved 43% (18/42) of pooled circulating SQCLC cells, whereas only 29% (14/48) were EpCAM positive. Confocal microscopy confirmed the localization of FGFR1 probe in suspicious circulating cells. Suspicious circulating elements were also observed in healthy donors and did not show any epithelial associated antigens. A significantly lower number of suspicious circulating cells in healthy donors compared to SQCLC patients was found. CONCLUSIONS: Among the heterogeneous cell population isolated by depletion procedure, the coexistence of cells with epithelial and/or mesenchymal phenotype suggests that EMT may participate to transendothelial invasion and migration of tumor cells in advanced SQCLC. The finding of cells with neither EpCAM or EMT phenotype, retrieved after non-EpCAM-based systems, underlines the presence of suspicious elements in the blood of both SQCLC patients and healthy donors. Further phenotyping and molecular analyses are necessary to fully characterize these circulating elements.
Assuntos
Antígenos de Neoplasias/metabolismo , Carcinoma de Células Escamosas/patologia , Moléculas de Adesão Celular/metabolismo , Separação Celular/métodos , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Molécula de Adesão da Célula Epitelial , Feminino , Dosagem de Genes , Humanos , Imuno-Histoquímica , Imunofenotipagem , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Doadores de TecidosRESUMO
Scaffolds for cardiac patch application must meet stringent requirements such as biocompatibility, biodegradability, and facilitate vascularization in the engineered tissue. Here, a bioactive, biocompatible, and biodegradable electrospun scaffold of poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) is proposed as a potential scaffold for cardiac patch application. The fibers are smooth bead free with average diameter = 0.8 ± 0.3 µm, mean pore size = 2.2 ± 1.2 µm, porosity = 62 ± 4%, and permeability higher than that of control biological tissue. For the first time, bioactive PGS-PCL fibers functionalized with vascular endothelial growth factor (VEGF) are developed, the approach used being chemical modification of the PGS-PCL fibers followed by subsequent binding of VEGF via amide bonding. The approach results in uniform immobilization of VEGF on the fibers; the concentrations are 1.0 µg cm(-2) for the PGS-PCL (H) and 0.60 µg cm(-2) for the PGS-PCL (L) samples. The bioactive scaffold supports the attachment and growth of seeded myogenic and vasculogenic cell lines. In fact, rat aortic endothelial cells also display angiogenic features indicating potential for the formation of vascular tree in the scaffold. These results therefore demonstrate the prospects of VEGF-functionalized PGS-PCL fibrous scaffold as promising matrix for cardiac patch application.