Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Heliyon ; 10(5): e27515, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38562501

RESUMO

We provide in this paper a comprehensive comparison of various transfer learning strategies and deep learning architectures for computer-aided classification of adult-type diffuse gliomas. We evaluate the generalizability of out-of-domain ImageNet representations for a target domain of histopathological images, and study the impact of in-domain adaptation using self-supervised and multi-task learning approaches for pretraining the models using the medium-to-large scale datasets of histopathological images. A semi-supervised learning approach is furthermore proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of the whole slide images (WSI). The models are subsequently retrained using the ground-truth labels and weak labels determined in the previous step, providing superior performance in comparison to standard in-domain transfer learning with balanced accuracy of 96.91% and F1-score 97.07%, and minimizing the pathologist's efforts for annotation. Finally, we provide a visualization tool working at WSI level which generates heatmaps that highlight tumor areas; thus, providing insights to pathologists concerning the most informative parts of the WSI.

2.
Molecules ; 29(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474491

RESUMO

Understanding and classifying inherent tumor heterogeneity is a multimodal approach, which can be undertaken at the genetic, biochemical, or morphological level, among others. Optical spectral methods such as Raman spectroscopy aim at rapid and non-destructive tissue analysis, where each spectrum generated reflects the individual molecular composition of an examined spot within a (heterogenous) tissue sample. Using a combination of supervised and unsupervised machine learning methods as well as a solid database of Raman spectra of native glioblastoma samples, we succeed not only in distinguishing explicit tumor areas-vital tumor tissue and necrotic tumor tissue can correctly be predicted with an accuracy of 76%-but also in determining and classifying different spectral entities within the histomorphologically distinct class of vital tumor tissue. Measurements of non-pathological, autoptic brain tissue hereby serve as a healthy control since their respective spectroscopic properties form an individual and reproducible cluster within the spectral heterogeneity of a vital tumor sample. The demonstrated decipherment of a spectral glioblastoma heterogeneity will be valuable, especially in the field of spectroscopically guided surgery to delineate tumor margins and to assist resection control.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Análise Espectral Raman/métodos , Aprendizado de Máquina , Algoritmos
3.
Brain Commun ; 5(6): fcad307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025281

RESUMO

Magnetic resonance imaging (MRI) has limitations in identifying underlying tissue pathology, which is relevant for neurological diseases such as multiple sclerosis, stroke or brain tumours. However, there are no standardized methods for correlating MRI features with histopathology. Thus, here we aimed to develop and validate a tool that can facilitate the correlation of brain MRI features to corresponding histopathology. For this, we designed the Brainbox, a waterproof and MRI-compatible 3D printed container with an integrated 3D coordinate system. We used the Brainbox to acquire post-mortem ex vivo MRI of eight human brains, fresh and formalin-fixed, and correlated focal imaging features to histopathology using the built-in 3D coordinate system. With its built-in 3D coordinate system, the Brainbox allowed correlation of MRI features to corresponding tissue substrates. The Brainbox was used to correlate different MR image features of interest to the respective tissue substrate, including normal anatomical structures such as the hippocampus or perivascular spaces, as well as a lacunar stroke. Brain volume decreased upon fixation by 7% (P = 0.01). The Brainbox enabled degassing of specimens before scanning, reducing susceptibility artefacts and minimizing bulk motion during scanning. In conclusion, our proof-of-principle experiments demonstrate the usability of the Brainbox, which can contribute to improving the specificity of MRI and the standardization of the correlation between post-mortem ex vivo human brain MRI and histopathology. Brainboxes are available upon request from our institution.

4.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373053

RESUMO

H3K27M mutant (mut) diffuse midline glioma (DMG) is a lethal cancer with no effective cure. The glycosphingolipids (GSL) metabolism is altered in these tumors and could be exploited to develop new therapies. We tested the effect of the glucosylceramide synthase inhibitors (GSI) miglustat and eliglustat on cell proliferation, alone or in combination with temozolomide or ionizing radiation. Miglustat was included in the therapy protocol of two pediatric patients. The effect of H3.3K27 trimethylation on GSL composition was analyzed in ependymoma. GSI reduced the expression of the ganglioside GD2 in a concentration and time-dependent manner and increased the expression of ceramide, ceramide 1-phosphate, sphingosine, and sphingomyelin but not of sphingosine 1-phosphate. Miglustat significantly increased the efficacy of irradiation. Treatment with miglustat according to dose recommendations for patients with Niemann-Pick disease was well tolerated with manageable toxicities. One patient showed a mixed response. In ependymoma, a high concentration of GD2 was found only in the presence of the loss of H3.3K27 trimethylation. In conclusion, treatment with miglustat and, in general, targeting GSL metabolism may offer a new therapeutic opportunity and can be administered in close proximity to radiation therapy. Alterations in H3K27 could be useful to identify patients with a deregulated GSL metabolism.


Assuntos
Ependimoma , Glioma , Humanos , Criança , Ceramidas , Glioma/tratamento farmacológico , Glioma/genética , Glioma/radioterapia
5.
Cell Rep ; 42(7): 112696, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379213

RESUMO

Treatment options for patients with NRAS-mutant melanoma are limited and lack an efficient targeted drug combination that significantly increases overall and progression-free survival. In addition, targeted therapy success is hampered by the inevitable emergence of drug resistance. A thorough understanding of the molecular processes driving cancer cells' escape mechanisms is crucial to tailor more efficient follow-up therapies. We performed single-cell RNA sequencing of NRAS-mutant melanoma treated with MEK1/2 plus CDK4/6 inhibitors to decipher transcriptional transitions during the development of drug resistance. Cell lines resuming full proliferation (FACs [fast-adapting cells]) and cells that became senescent (SACs [slow-adapting cells]) over prolonged treatment were identified. The early drug response was characterized by transitional states involving increased ion signaling, driven by upregulation of the ATP-gated ion channel P2RX7. P2RX7 activation was associated with improved therapy responses and, in combination with targeted drugs, could contribute to the delayed onset of acquired resistance in NRAS-mutant melanoma.


Assuntos
Melanoma , Transcriptoma , Humanos , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Receptores Purinérgicos P2X7/metabolismo , Proteínas de Membrana/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
6.
Cancers (Basel) ; 14(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36551537

RESUMO

Neuroblastoma (NBL) and medulloblastoma (MB) are aggressive pediatric cancers which can benefit from therapies targeting gangliosides. Therefore, we compared the ganglioside profile of 9 MB and 14 NBL samples by thin layer chromatography and mass spectrometry. NBL had the highest expression of GD2 (median 0.54 nmol GD2/mg protein), and also expressed complex gangliosides. GD2-low samples expressed GD1a and were more differentiated. MB mainly expressed GD2 (median 0.032 nmol GD2/mg protein) or GM3. Four sonic hedgehog-activated (SHH) as well as one group 4 and one group 3 MBs were GD2-positive. Two group 3 MB samples were GD2-negative but GM3-positive. N-glycolyl neuraminic acid-containing GM3 was neither detected in NBL nor MB by mass spectrometry. Furthermore, a GD2-phenotype predicting two-gene signature (ST8SIA1 and B4GALNT1) was applied to RNA-Seq datasets, including 86 MBs and validated by qRT-PCR. The signature values were decreased in group 3 and wingless-activated (WNT) compared to SHH and group 4 MBs. These results suggest that while NBL is GD2-positive, only some MB patients can benefit from a GD2-directed therapy. The expression of genes involved in the ganglioside synthesis may allow the identification of GD2-positive MBs. Finally, the ganglioside profile may reflect the differentiation status in NBL and could help to define MB subtypes.

7.
Antioxidants (Basel) ; 11(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892629

RESUMO

The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.

8.
Cancers (Basel) ; 14(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565362

RESUMO

First-line drug in the treatment of glioblastoma, the most severe brain cancer, is temozolomide (TMZ), a DNA-methylating agent that induces the critical damage O6-methylguanine (O6MeG). This lesion is cytotoxic through the generation of mismatch repair-mediated DNA double-strand breaks (DSBs), which trigger apoptotic pathways. Previously, we showed that O6MeG also induces cellular senescence (CSEN). Here, we show that TMZ-induced CSEN is a late response which has similar kinetics to apoptosis, but at a fourfold higher level. CSEN cells show a high amount of DSBs, which are located outside of telomeres, a high level of ROS and oxidized DNA damage (8-oxo-guanine), and sustained activation of the DNA damage response and histone methylation. Despite the presence of DSBs, CSEN cells are capable of repairing radiation-induced DSBs. Glioblastoma cells that acquired resistance to TMZ became simultaneously resistant to TMZ-induced CSEN. Using a Tet-On glioblastoma cell system, we show that upregulation of MGMT immediately after TMZ completely abrogated apoptosis and CSEN, while induction of MGMT long-term (>72 h) after TMZ did not reduce apoptosis and CSEN. Furthermore, upregulation of MGMT in the senescent cell population had no impact on the survival of senescent cells, indicating that O6MeG is required for induction, but not for maintenance of the senescent state. We further show that, in recurrent GBM specimens, a significantly higher level of DSBs and CSEN-associated histone H3K27me3 was observed than in the corresponding primary tumors. Overall, the data indicate that CSEN is a key node induced in GBM following chemotherapy.

9.
Spine J ; 22(1): 126-135, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175468

RESUMO

BACKGROUND CONTEXT: Spinal arachnoid web (SAW) is a rare condition characterized by focal thickening of the arachnoid membrane causing displacement and compression of the spinal cord with progressive symptoms and neurological deficits. Recent reports and clinical experience suggest that SAW is a distinct entity with specific radiological findings and treatment strategies distinguishable from other arachnopathies and potential differential diagnoses. PURPOSE: To better define the diagnostic and clinical features, treatment options and outcomes of surgically treated SAW. STUDY DESIGN: Multicentric retrospective cohort study. PATIENT SAMPLE: Twelve cases of SAW surgically treated at three different centers. OUTCOME MEASURES: Self-reported and neurological outcome measurements (pain, sensory-motor deficits, vegetative dysfunctions) were assessed at follow-up timepoints. METHODS: Retrospective review of prospectively collected data on all patients surgically treated for SAW from three participating neurosurgical centers between 2014 and 2020. Clinicopathological data, including neurological presentation, radiological and histological findings and outcome data were analyzed. RESULTS: Twelve radiologically and surgically confirmed cases of SAW were analyzed. Mean patient age was 54.7 [±12.7], 67% were male. All SAWs were located in the posterior thoracic dural sac. On magnetic resonance imaging (MRI), the "scalpel sign" - a characteristic focal dorsal indentation of the spinal cord resembling a scalpel blade - was identified in all patients. A focal intramedullary syrinx was present in 83%. Preoperative clinical symptoms included signs of myelopathy, pain, weakness and sensory loss, most commonly affecting the trunk/upper back or lower extremities. Laminectomy or laminoplasty with intradural excision of the SAW was the surgical treatment of choice in all cases. Intraoperative ultrasound was valuable to visualize the cerebrospinal fluid (CSF) flow obstruction, confirm the SAW location before dura incision and to control adequacy of resection. After surgery, sensory loss and weakness in particular showed significant improvement. CONCLUSIONS: The present study comprises the largest series of surgically treated SAW, underscoring the unique clinical, radiographic, histopathological, and surgical findings. We want to emphasize SAW being a distinct entity of spinal arachnopathy with a favorable long-term outcome if diagnosed correctly and treated surgically. Intraoperative ultrasound aids visualizing the SAW before dural incision, as well as verifying restored CSF flow after resection.


Assuntos
Cistos Aracnóideos , Doenças da Medula Espinal , Siringomielia , Cistos Aracnóideos/cirurgia , Humanos , Laminectomia , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos , Doenças da Medula Espinal/diagnóstico por imagem , Doenças da Medula Espinal/cirurgia , Siringomielia/diagnóstico por imagem , Siringomielia/cirurgia
10.
Free Neuropathol ; 32022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37284145

RESUMO

In recent years, Raman spectroscopy has been more and more frequently applied to address research questions in neuroscience. As a non-destructive technique based on inelastic scattering of photons, it can be used for a wide spectrum of applications including neurooncological tumor diagnostics or analysis of misfolded protein aggregates involved in neurodegenerative diseases. Progress in the technical development of this method allows for an increasingly detailed analysis of biological samples and may therefore open new fields of applications. The goal of our review is to provide an introduction into Raman scattering, its practical usage and also commonly associated pitfalls. Furthermore, intraoperative assessment of tumor recurrence using Raman based histology images as well as the search for non-invasive ways of diagnosis in neurodegenerative diseases are discussed. Some of the applications mentioned here may serve as a basis and possibly set the course for a future use of the technique in clinical practice. Covering a broad range of content, this overview can serve not only as a quick and accessible reference tool but also provide more in-depth information on a specific subtopic of interest.

11.
Cancers (Basel) ; 13(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572900

RESUMO

The ganglioside GD2 is an important target in childhood cancer. Nevertheless, the only therapy targeting GD2 that is approved to date is the monoclonal antibody dinutuximab, which is used in the therapy of neuroblastoma. The relevance of GD2 as a target in other tumor entities remains to be elucidated. Here, we analyzed the expression of GD2 in different pediatric tumor entities by flow cytometry and tested two approaches for targeting GD2. H3K27M-mutant diffuse midline glioma (H3K27M-mutant DMG) samples showed the highest expression of GD2 with all cells strongly positive for the antigen. Ewing's sarcoma (ES) samples also showed high expression, but displayed intra- and intertumor heterogeneity. Osteosarcoma had low to intermediate expression with a high percentage of GD2-negative cells. Dinutuximab beta in combination with irinotecan and temozolomide was used to treat a five-year-old girl with refractory ES. Disease control lasted over 12 months until a single partially GD2-negative intracranial metastasis was detected. In order to target GD2 in H3K27M-mutant DMG, we blocked ganglioside synthesis via eliglustat, since dinutuximab cannot cross the blood-brain barrier. Eliglustat is an inhibitor of glucosylceramide synthase, and it is used for treating children with Gaucher's disease. Eliglustat completely inhibited the proliferation of primary H3K27M-mutant DMG cells in vitro. In summary, our data provide evidence that dinutuximab might be effective in tumors with high GD2 expression. Moreover, disrupting the ganglioside metabolism in H3K27M-mutant DMG could open up a new therapeutic option for this highly fatal cancer.

12.
Neuropathol Appl Neurobiol ; 47(3): 454-459, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33249605

RESUMO

Coronavirus disease 19 (COVID-19) is a rapidly evolving pandemic caused by the coronavirus Sars-CoV-2. Clinically manifest central nervous system symptoms have been described in COVID-19 patients and could be the consequence of commonly associated vascular pathology, but the detailed neuropathological sequelae remain largely unknown. A total of six cases, all positive for Sars-CoV-2, showed evidence of cerebral petechial hemorrhages and microthrombi at autopsy. Two out of six patients showed an elevated risk for disseminated intravascular coagulopathy according to current criteria and were excluded from further analysis. In the remaining four patients, the hemorrhages were most prominent at the grey and white matter junction of the neocortex, but were also found in the brainstem, deep grey matter structures and cerebellum. Two patients showed vascular intramural inflammatory infiltrates, consistent with Sars-CoV-2-associated endotheliitis, which was associated by elevated levels of the Sars-CoV-2 receptor ACE2 in the brain vasculature. Distribution and morphology of patchy brain microbleeds was clearly distinct from hypertension-related hemorrhage, critical illness-associated microbleeds and cerebral amyloid angiopathy, which was ruled out by immunohistochemistry. Cerebral microhemorrhages in COVID-19 patients could be a consequence of Sars- CoV-2-induced endotheliitis and more general vasculopathic changes and may correlate with an increased risk of vascular encephalopathy.


Assuntos
COVID-19/complicações , Hemorragia Cerebral/patologia , Hemorragia Cerebral/virologia , Vasculite do Sistema Nervoso Central/patologia , Vasculite do Sistema Nervoso Central/virologia , Idoso , Idoso de 80 Anos ou mais , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Estudos Retrospectivos , SARS-CoV-2
14.
PLoS One ; 13(8): e0202131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30092082

RESUMO

INTRODUCTION: The acute respiratory distress syndrome is not only associated with a high mortality, but also goes along with cognitive impairment in survivors. The cause for this cognitive impairment is still not clear. One possible mechanism could be cerebral inflammation as result of a "lung-brain-crosstalk". Even mechanical ventilation itself can induce cerebral inflammation. We hypothesized, that an acute lung injury aggravates the cerebral inflammation induced by mechanical ventilation itself and leads to neuronal damage. METHODS: After approval of the institutional and state animal care committee 20 pigs were randomized to one of three groups: lung injury by central venous injection of oleic acid (n = 8), lung injury by bronchoalveolar lavage in combination with one hour of injurious ventilation (n = 8) or control (n = 6). Brain tissue of four native animals from a different study served as native group. For six hours all animals were ventilated with a tidal volume of 7 ml kg-1 and a scheme for positive end-expiratory pressure and inspired oxygen fraction, which was adapted from the ARDS network tables. Afterwards the animals were killed and the brains were harvested for histological (number of neurons and microglia) and molecular biologic (TNFalpha, IL-1beta, and IL-6) examinations. RESULTS: There was no difference in the number of neurons or microglia cells between the groups. TNFalpha was significantly higher in all groups compared to native (p < 0.05), IL-6 was only increased in the lavage group compared to native (p < 0.05), IL-1beta showed no difference between the groups. DISCUSSION: With our data we can confirm earlier results, that mechanical ventilation itself seems to trigger cerebral inflammation. This is not aggravated by acute lung injury, at least not within the first 6 hours after onset. Nevertheless, it seems too early to dismiss the idea of lung-injury induced cerebral inflammation, as 6 hours might be just not enough time to see any profound effect.


Assuntos
Apoptose , Córtex Cerebral/patologia , Inflamação/patologia , Lesão Pulmonar/patologia , Respiração Artificial/efeitos adversos , Animais , Hipocampo/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Neurônios/patologia , Respiração com Pressão Positiva , Distribuição Aleatória , Síndrome do Desconforto Respiratório/fisiopatologia , Suínos , Fator de Necrose Tumoral alfa/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
15.
Eur Heart J ; 39(38): 3528-3539, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29905797

RESUMO

Aims: Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results: C57BL/6j and Nox2-/- (gp91phox-/-) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effects of around-the-clock noise on the vasculature and brain were mostly prevented by Nox2 deficiency. Around-the-clock aircraft noise of the mice caused the most pronounced vascular effects and dysregulation of Foxo3/circadian clock as revealed by next generation sequencing (NGS), suggesting impaired sleep quality in exposed mice. Accordingly, sleep but not awake phase noise caused increased blood pressure, endothelial dysfunction, increased markers of vascular/systemic oxidative stress, and inflammation. Noise also caused cerebral oxidative stress and inflammation, endothelial and neuronal nitric oxide synthase (e/nNOS) uncoupling, nNOS mRNA and protein down-regulation, and Nox2 activation. NGS revealed similarities in adverse gene regulation between around-the-clock and sleep phase noise. In patients with established coronary artery disease, night-time aircraft noise increased oxidative stress, and inflammation biomarkers in serum. Conclusion: Aircraft noise increases vascular and cerebral oxidative stress via Nox2. Sleep deprivation and/or fragmentation caused by noise triggers vascular dysfunction. Thus, preventive measures that reduce night-time aircraft noise are warranted.


Assuntos
Aeronaves , Encéfalo/fisiopatologia , Endotélio Vascular/fisiopatologia , NADPH Oxidase 2/fisiologia , Ruído dos Transportes/efeitos adversos , Privação do Sono/fisiopatologia , Animais , Relógios Circadianos/fisiologia , GMP Cíclico/metabolismo , Regulação da Expressão Gênica , Hemodinâmica/fisiologia , Humanos , Inflamação/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Óxido Nítrico Sintase Tipo I/metabolismo , Estresse Oxidativo , Transdução de Sinais
16.
PLoS One ; 11(1): e0146679, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26752421

RESUMO

We have previously shown that granulocyte-colony stimulating factor (G-CSF) treatment alone, or in combination with constraint movement therapy (CIMT) either sequentially or concomitantly, results in significantly improved sensorimotor recovery after photothrombotic stroke in rats in comparison to untreated control animals. CIMT alone did not result in any significant differences compared to the control group (Diederich et al., Stroke, 2012;43:185-192). Using a subset of rat brains from this former experiment the present study was designed to evaluate whether dendritic plasticity would parallel improved functional outcomes. Five treatment groups were analyzed (n = 6 each) (i) ischemic control (saline); (ii) CIMT (CIMT between post-stroke days 2 and 11); (iii) G-CSF (10 µg/kg G-CSF daily between post-stroke days 2 and 11); (iv) combined concurrent group (CIMT plus G-CSF) and (v) combined sequential group (CIMT between post-stroke days 2 and 11; 10 µg/kg G-CSF daily between post-stroke days 12 and 21, respectively). After impregnation of rat brains with a modified Golgi-Cox protocol layer V pyramidal neurons in the peri-infarct cortex as well as the corresponding contralateral cortex were analyzed. Surprisingly, animals with a similar degree of behavioral recovery exhibited quite different patterns of dendritic plasticity in both peri-lesional and contralesional areas. The cause for these patterns is not easily to explain but puts the simple assumption that increased dendritic complexity after stroke necessarily results in increased functional outcome into perspective.


Assuntos
Dendritos/patologia , Luz , Plasticidade Neuronal , Modalidades de Fisioterapia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/terapia , Animais , Terapia Combinada , Dendritos/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Masculino , Movimento , Plasticidade Neuronal/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos Wistar , Recuperação de Função Fisiológica/efeitos dos fármacos
17.
J Anat ; 224(4): 377-91, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24387791

RESUMO

The granulocyte colony-stimulating factor (G-CSF), being a member of the hematopoietic growth factor family, is also critically involved in controlling proliferation and differentiation of neural stem cells. Treatment with G-CSF has been shown to result in substantial neuroprotective and neuroregenerative effects in various experimental models of acute and chronic diseases of the central nervous system. Although G-CSF has been tested in a clinical study for treatment of acute ischemic stroke, there is only fragmentary data on the distribution of this cytokine and its receptor in the human brain. Therefore, the present study was focused on the immunohistochemical analysis of the protein expression of G-CSF and its receptor (G-CSF R) in the adult human brain. Since G-CSF has been shown not only to exert neuroprotective effects in animal models of Alzheimer's disease (AD) but also to be a candidate for clinical treatment, we have also placed an emphasis on the regulation of these molecules in this neurodegenerative disease. One major finding is that both G-CSF and G-CSF R were ubiquitously but not uniformly expressed in neurons throughout the CNS. Protein expression of G-CSF and G-CSF R was not restricted to neurons but was also detectable in astrocytes, ependymal cells, and choroid plexus cells. However, the distribution of G-CSF and G-CSF R did not substantially differ between AD brains and control, even in the hippocampus, where early neurodegenerative changes typically occur.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Receptores de Fator Estimulador de Colônias de Granulócitos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo
18.
Immunobiology ; 218(4): 517-26, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22884359

RESUMO

The antiphospholipid syndrome (APS) is an autoimmune disease where the presence of high titers of circulating autoantibodies causes thrombosis with consecutive infarcts. In experimental APS (eAPS), a mouse model of APS, behavioral abnormalities develop in the absence of vessel occlusion or infarcts. Using brain hemispheres of control and eAPS mice with documented neurological and cognitive deficits, we checked for lymphocytic infiltration, activation of glia and macrophages, as well as alterations of ligand binding densities of various neurotransmitter receptors to unravel the molecular basis of this abnormal behavior. Lymphocytic infiltrates were immunohistochemically characterized using antibodies against CD3, CD4, CD8 and forkhead box P3 (Foxp3), respectively. GFAP, Iba1 and CD68-immunohistochemistry was performed, to check for activation of astrocytes, microglia and macrophages. Ligand binding densities of NMDA, AMPA, GABAA and 5-HT1A receptors were analyzed by in vitro receptor autoradiography. No significant inflammatory reaction occurred in eAPS mice. There was neither activation of astrocytes or microglia nor accumulation of macrophages. Binding values of excitatory and inhibitory neurotransmitter receptors were largely unchanged. However, ligand binding densities of the modulatory serotonergic 5-HT1A receptors in the hippocampus and in the primary somatosensory cortex of eAPS mice were significantly upregulated which is suggested to induce the behavioral abnormalities observed.


Assuntos
Síndrome Antifosfolipídica/imunologia , Comportamento Animal , Hipocampo/imunologia , Doenças do Sistema Nervoso/imunologia , Receptor 5-HT1A de Serotonina/imunologia , Córtex Somatossensorial/imunologia , Regulação para Cima/imunologia , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/imunologia , Síndrome Antifosfolipídica/metabolismo , Síndrome Antifosfolipídica/patologia , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Receptor 5-HT1A de Serotonina/biossíntese , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/patologia
19.
J Neural Transm (Vienna) ; 119(11): 1389-406, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22430742

RESUMO

Granulocyte-monocyte colony-stimulating factor (GM-CSF) is a member of the hematopoietic growth factor family, promoting proliferation and differentiation of hematopoietic progenitor cells of the myeloid lineage. In recent years, GM-CSF has also proved to be an important neurotrophic factor in the central nervous system (CNS) via binding to the GM-CSF receptor (GM-CSF R). Furthermore, studies on rodent CNS revealed a wide distribution of both the major binding α-subunit of the GM-CSF R (GM-CSF Rα) and its ligand. Since respective data on the expression pattern of these two molecules are still lacking, the present study has been designed to systematically analyze the protein expression of GM-CSF and GM-CSF Rα in the human brain, with particular emphasis on their regulation in Alzheimer's disease (AD). One major finding is that both GM-CSF and GM-CSF Rα were ubiquitously but not uniformly expressed in neurons throughout the CNS. Protein expression of GM-CSF and GM-CSF Rα was not restricted to neurons but also detectable in astrocytes, ependymal cells and choroid plexus cells. Interestingly, distribution and intensity of immunohistochemical staining for GM-CSF did not differ among AD brains and age-matched controls. Concerning GM-CSF Rα, a marked reduction of protein expression was predominantly detected in the hippocampus although a slight reduction was also found in various cortical regions, thalamic nuclei and some brainstem nuclei. Since the hippocampus is one of the target regions of neurodegenerative changes in AD, reduction of GM-CSF Rα, with consecutive downregulation of GM-CSF signaling, may contribute to in the progressive course of neurodegeneration in AD.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Regulação para Baixo/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Subunidades Proteicas/metabolismo
20.
J Neuroimmunol ; 227(1-2): 1-9, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20557950

RESUMO

Using a transgenic mouse model of ischemic stroke we checked for a possible interaction of antiphospholipid antibodies (aPL) which often cause thromboses as well as central nervous system (CNS) involvement under non-thrombotic conditions and the TWEAK/Fn14 pathway known to be adversely involved in inflammatory and ischemic brain disease. After 7 days, infarct volumes were reduced in Fn14 deficient mice and were further decreased by aPL treatment. This was associated with strongest increase of the endogenous neuroprotective G-CSF/G-CSF receptor system. This unexpected beneficial action of aPL is an example for a non-thrombogenic action and the double-edged nature of aPL.


Assuntos
Anticorpos Antifosfolipídeos/uso terapêutico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos/biossíntese , Receptores do Fator de Necrose Tumoral/deficiência , Animais , Anticorpos Antifosfolipídeos/efeitos adversos , Isquemia Encefálica/patologia , Fator Estimulador de Colônias de Granulócitos/fisiologia , Humanos , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Distribuição Aleatória , Receptores de Fator Estimulador de Colônias de Granulócitos/biossíntese , Receptores de Fator Estimulador de Colônias de Granulócitos/fisiologia , Receptores do Fator de Necrose Tumoral/fisiologia , Transdução de Sinais/genética , Receptor de TWEAK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA