Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 28(6): 1115-1126, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31004454

RESUMO

We report the recombinant preparation from Escherichia coli cells of samples of two closely related, small, secreted cysteine-rich plant peptides: rapid alkalinization factor 1 (RALF1) and rapid alkalinization factor 8 (RALF8). Purified samples of the native sequence of RALF8 exhibited well-resolved nuclear magnetic resonance (NMR) spectra and also biological activity through interaction with a plant receptor kinase, cytoplasmic calcium mobilization, and in vivo root growth suppression. By contrast, RALF1 could only be isolated from inclusion bodies as a construct containing an N-terminal His-tag; its poorly resolved NMR spectrum was indicative of aggregation. We prepared samples of the RALF8 peptide labeled with 15 N and 13 C for NMR analysis and obtained near complete 1 H, 13 C, and 15 N NMR assignments; determined the disulfide pairing of its four cysteine residues; and examined its solution structure. RALF8 is mostly disordered except for the two loops spanned by each of its two disulfide bridges.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Sequência de Aminoácidos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Alinhamento de Sequência , Soluções
2.
Structure ; 26(8): 1127-1136.e4, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29983374

RESUMO

Cysteine desulfurase plays a central role in mitochondrial iron-sulfur cluster biogenesis by generating sulfur through the conversion of L-cysteine to L-alanine and by serving as the platform for assembling other components of the biosynthetic machinery, including ISCU, frataxin, and ferredoxin. The human mitochondrial cysteine desulfurase complex consists of two copies each of NFS1, ISD11, and acyl carrier protein. We describe results from chemical crosslinking coupled with tandem mass spectrometry and small-angle X-ray scattering studies that are consistent with a closed NFS1 dimer rather than an open one for both the cysteine desulfurase-ISCU and cysteine desulfurase-ISCU-frataxin complexes. We present a structural model for the cysteine desulfurase-ISCU-frataxin complex derived from chemical crosslinking restraints in conjunction with the recent crystal structure of the cysteine desulfurase-ISCU-zinc complex and distance constraints from nuclear magnetic resonance.


Assuntos
Proteína de Transporte de Acila/química , Liases de Carbono-Enxofre/química , Proteínas de Ligação ao Ferro/química , Proteínas Reguladoras de Ferro/química , Proteínas Ferro-Enxofre/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Sítios de Ligação , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Cinética , Maleimidas/química , Mitocôndrias/química , Mitocôndrias/enzimologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Espectrometria de Massas em Tandem , Difração de Raios X , Frataxina
3.
J Inorg Biochem ; 183: 107-116, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29576242

RESUMO

Frataxin (FXN) is involved in mitochondrial iron­sulfur (Fe-S) cluster biogenesis and serves to accelerate Fe-S cluster formation. FXN deficiency is associated with Friedreich ataxia, a neurodegenerative disease. We have used a combination of isothermal titration calorimetry and multinuclear NMR spectroscopy to investigate interactions among the components of the biological machine that carries out the assembly of iron­sulfur clusters in human mitochondria. Our results show that FXN tightly binds a single Fe2+ but not Fe3+. While FXN (with or without bound Fe2+) does not bind the scaffold protein ISCU directly, the two proteins interact mutually when each is bound to the cysteine desulfurase complex ([NFS1]2:[ISD11]2:[Acp]2), abbreviated as (NIA)2, where "N" represents the cysteine desulfurase (NFS1), "I" represents the accessory protein (ISD11), and "A" represents acyl carrier protein (Acp). FXN binds (NIA)2 weakly in the absence of ISCU but more strongly in its presence. Fe2+-FXN binds to the (NIA)2-ISCU2 complex without release of iron. However, upon the addition of both l-cysteine and a reductant (either reduced FDX2 or DTT), Fe2+ is released from FXN as consistent with Fe2+-FXN being the proximal source of iron for Fe-S cluster assembly.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Calorimetria , Ferro/química , Espectroscopia de Ressonância Magnética , Ligação Proteica , Enxofre/química , Frataxina
4.
Biochemistry ; 57(9): 1491-1500, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29406711

RESUMO

Whereas iron-sulfur (Fe-S) cluster assembly on the wild-type scaffold protein ISCU, as catalyzed by the human cysteine desulfurase complex (NIA)2, exhibits a requirement for frataxin (FXN), in yeast, ISCU variant M108I has been shown to bypass the FXN requirement. Wild-type ISCU populates two interconverting conformational states: one structured and one dynamically disordered. We show here that variants ISCU(M108I) and ISCU(D39V) of human ISCU populate only the structured state. We have compared the properties of ISCU, ISCU(M108I), and ISCU(D39V), with and without FXN, in both the cysteine desulfurase step of Fe-S cluster assembly and the overall Fe-S cluster assembly reaction catalyzed by (NIA)2. In the cysteine desulfurase step with dithiothreitol (DTT) as the reductant, FXN was found to stimulate cysteine desulfurase activity with both the wild-type and structured variants, although the effect was less prominent with ISCU(D39V) than with the wild-type or ISCU(M108I). In overall Fe-S cluster assembly, frataxin was found to stimulate cluster assembly with both the wild-type and structured variants when the reductant was DTT; however, with the physiological reductant, reduced ferredoxin 2 (rdFDX2), FXN stimulated the reaction with wild-type ISCU but not with either ISCU(M108I) or ISCU(D39V). Nuclear magnetic resonance titration experiments revealed that wild-type ISCU, FXN, and rdFDX2 all bind to (NIA)2. However, when ISCU was replaced by the fully structured variant ISCU(M108I), the addition of rdFDX2 to the [NIA-ISCU(M108I)-FXN]2 complex led to the release of FXN. Thus, the displacement of FXN by rdFDX2 explains the failure of FXN to stimulate Fe-S cluster assembly on ISCU(M108I).


Assuntos
Liases de Carbono-Enxofre/metabolismo , Ferredoxinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Proteínas Ferro-Enxofre/genética , Camundongos , Modelos Moleculares , Frataxina
5.
ACS Chem Biol ; 12(4): 918-921, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28233492

RESUMO

Mitochondrial cysteine desulfurase is an essential component of the machinery for iron-sulfur cluster biosynthesis. It has been known that human cysteine desulfurase that is catalytically active in vitro can be prepared by overexpressing in Escherichia coli cells two protein components of this system, the cysteine desulfurase protein NFS1 and the auxiliary protein ISD11. We report here that this active preparation contains, in addition, the holo-form of E. coli acyl carrier protein (Acp). We have determined the stoichiometry of the complex to be [Acp]2:[ISD11]2:[NFS1]2. Acyl carrier protein recently has been found to be an essential component of the iron-sulfur protein biosynthesis machinery in mitochondria; thus, because of the activity of [Acp]2:[ISD11]2:[NFS1]2 in supporting iron-sulfur cluster assembly in vitro, it appears that E. coli Acp can substitute for its human homologue.


Assuntos
Proteína de Transporte de Acila/metabolismo , Liases de Carbono-Enxofre/metabolismo , Escherichia coli/genética , Proteínas Reguladoras de Ferro/metabolismo , Mitocôndrias/enzimologia , Liases de Carbono-Enxofre/genética , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Proteínas Reguladoras de Ferro/genética , Mitocôndrias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Espectrometria de Massas em Tandem , Difração de Raios X
6.
Biochemistry ; 56(3): 487-499, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28001042

RESUMO

Ferredoxins play an important role as an electron donor in iron-sulfur (Fe-S) cluster biosynthesis. Two ferredoxins, human mitochondrial ferredoxin 1 (FDX1) and human mitochondrial ferredoxin 2 (FDX2), are present in the matrix of human mitochondria. Conflicting results have been reported regarding their respective function in mitochondrial iron-sulfur cluster biogenesis. We report here biophysical studies of the interaction of these two ferredoxins with other proteins involved in mitochondrial iron-sulfur cluster assembly. Results from nuclear magnetic resonance spectroscopy show that both FDX1 and FDX2 (in both their reduced and oxidized states) interact with the protein complex responsible for cluster assembly, which contains cysteine desulfurase (NFS1), ISD11 (also known as LYRM4), and acyl carrier protein (Acp). In all cases, ferredoxin residues close to the Fe-S cluster are involved in the interaction with this complex. Isothermal titration calorimetry results showed that FDX2 binds more tightly to the cysteine desulfurase complex than FDX1 does. The reduced form of each ferredoxin became oxidized in the presence of the cysteine desulfurase complex when l-cysteine was added, leading to its conversion to l-alanine and the generation of sulfide. In an in vitro reaction, the reduced form of each ferredoxin was found to support Fe-S cluster assembly on ISCU; the rate of cluster assembly was faster with FDX2 than with FDX1. Taken together, these results show that both FDX1 and FDX2 can function in Fe-S cluster assembly in vitro.


Assuntos
Liases de Carbono-Enxofre/química , Ferredoxinas/química , Ferro/química , Enxofre/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Sequência de Aminoácidos , Animais , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Cisteína , Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Ferredoxinas/genética , Ferredoxinas/metabolismo , Regulação da Expressão Gênica , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Moleculares , Oxirredução , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Enxofre/metabolismo , Frataxina
7.
Structure ; 24(12): 2080-2091, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27818104

RESUMO

Human mitochondrial NFU1 functions in the maturation of iron-sulfur proteins, and NFU1 deficiency is associated with a fatal mitochondrial disease. We determined three-dimensional structures of the N- and C-terminal domains of human NFU1 by nuclear magnetic resonance spectroscopy and used these structures along with small-angle X-ray scattering (SAXS) data to derive structural models for full-length monomeric apo-NFU1, dimeric apo-NFU1 (an artifact of intermolecular disulfide bond formation), and holo-NFUI (the [4Fe-4S] cluster-containing form of the protein). Apo-NFU1 contains two cysteine residues in its C-terminal domain, and two apo-NFU1 subunits coordinate one [4Fe-4S] cluster to form a cluster-linked dimer. Holo-NFU1 consists of a complex of three of these dimers as shown by molecular weight estimates from SAXS and size-exclusion chromatography. The SAXS-derived structural model indicates that one N-terminal region from each of the three dimers forms a tripartite interface. The activity of the holo-NFU1 preparation was verified by demonstrating its ability to activate apo-aconitase.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Enxofre/metabolismo , Humanos , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
Biochemistry ; 53(46): 7148-59, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25372495

RESUMO

Proteins from the isc operon of Escherichia coli constitute the machinery used to synthesize iron-sulfur (Fe-S) clusters for delivery to recipient apoproteins. Efficient and rapid [2Fe-2S] cluster transfer from the holo-scaffold protein IscU depends on ATP hydrolysis in the nucleotide-binding domain (NBD) of HscA, a specialized Hsp70-type molecular chaperone with low intrinsic ATPase activity (0.02 min(-1) at 25 °C, henceforth reported in units of min(-1)). HscB, an Hsp40-type cochaperone, binds to HscA and stimulates ATP hydrolysis to promote cluster transfer, yet while the interactions between HscA and HscB have been investigated, the role of HscA's interdomain linker in modulating ATPase activity has not been explored. To address this issue, we created three variants of the 40 kDa NBD of HscA: NBD alone (HscA386), NBD with a partial linker (HscA389), and NBD with the full linker (HscA395). We found that the rate of ATP hydrolysis of HscA395 (0.45 min(-1)) is nearly 15-fold higher than that of HscA386 (0.035 min(-1)), although their apparent affinities for ATP are equivalent. HscA395, which contains the full covalently linked linker peptide, exhibited intrinsic tryptophan fluorescence emission and basal thermostability that were higher than those of HscA386. Furthermore, HscA395 displayed narrower (1)H(N) line widths in its two-dimensional (1)H-(15)N TROSY-HSQC spectrum in comparison to HscA386, indicating that the peptide in the cis configuration binds to and stabilizes the structure of the NBD. The addition to HscA386 of a synthetic peptide with a sequence identical to that of the interdomain linker (L(387)LLDVIPLS(395)) stimulated its ATPase activity and induced widespread NMR chemical shift perturbations indicative of a binding interaction in the trans configuration.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Hidrólise , Modelos Moleculares , Estabilidade Proteica , Estrutura Terciária de Proteína
9.
J Am Chem Soc ; 136(33): 11586-9, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-25080945

RESUMO

The structural mechanism by which Hsp70-type chaperones interact with Hsp40-type co-chaperones has been of great interest, yet still remains a matter of debate. Here, we used solution NMR spectroscopy to investigate the ATP-/ADP-dependent interactions between Escherichia coli HscA and HscB, the specialized Hsp70/Hsp40 molecular chaperones that mediate iron-sulfur cluster transfer. We observed that NMR signals assigned to amino acid residues in the J-domain and its "HPD" motif of HscB broadened severely upon the addition of ATP-bound HscA, but these signals were not similarly broadened by ADP-bound HscA or the isolated nucleotide binding domain of HscA complexed with either ATP or ADP. An HscB variant with an altered HPD motif, HscB(H32A,P33A,D34A), failed to manifest WT-like NMR signal perturbations and also abolished WT-like stimulation of ATP hydrolysis by HscA. In addition, residues 153-171 in the C-terminal region of HscB exhibited NMR signal perturbations upon interaction with HscA, alone or complexed with ADP or ATP. These results demonstrate that the HPD motif in the J-domain of HscB directly interacts with ATP-bound HscA and suggest that a second, less nucleotide-dependent binding site for HscA resides in the C-terminal region of HscB.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Proteínas Ferro-Enxofre/química , Nucleotídeos/química , Nucleotídeos/metabolismo , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Escherichia coli/química , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Ressonância Magnética Nuclear Biomolecular
10.
PLoS One ; 9(6): e97198, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24937088

RESUMO

Human rhinovirus strains differ greatly in their virulence, and this has been correlated with the differing substrate specificity of the respective 2A protease (2Apro). Rhinoviruses use their 2Apro to cleave a spectrum of cellular proteins important to virus replication and anti-host activities. These enzymes share a chymotrypsin-like fold stabilized by a tetra-coordinated zinc ion. The catalytic triad consists of conserved Cys (C105), His (H34), and Asp (D18) residues. We used a semi-automated NMR protocol developed at NMRFAM to determine the solution structure of 2Apro (C105A variant) from an isolate of the clinically important rhinovirus C species (RV-C). The backbone of C2 2Apro superimposed closely (1.41-1.81 Å rmsd) with those of orthologs from RV-A2, coxsackie B4 (CB4), and enterovirus 71 (EV71) having sequence identities between 40% and 60%. Comparison of the structures suggest that the differential functional properties of C2 2Apro stem from its unique surface charge, high proportion of surface aromatics, and sequence surrounding the di-tyrosine flap.


Assuntos
Cisteína Endopeptidases/química , Rhinovirus/enzimologia , Proteínas Virais/química , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Terciária de Proteína
11.
J Am Chem Soc ; 136(22): 7933-42, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24810328

RESUMO

The Escherichia coli isc operon encodes key proteins involved in the biosynthesis of iron-sulfur (Fe-S) clusters. Whereas extensive studies of most ISC proteins have revealed their functional properties, the role of IscX (also dubbed YfhJ), a small acidic protein encoded by the last gene in the operon, has remained in question. Previous studies showed that IscX binds iron ions and interacts with the cysteine desulfurase (IscS) and the scaffold protein for cluster assembly (IscU), and it has been proposed that IscX functions either as an iron supplier or a regulator of Fe-S cluster biogenesis. We have used a combination of NMR spectroscopy, small-angle X-ray scattering (SAXS), chemical cross-linking, and enzymatic assays to enlarge our understanding of the interactions of IscX with iron ions, IscU, and IscS. We used chemical shift perturbation to identify the binding interfaces of IscX and IscU in their complex. NMR studies showed that Fe(2+) from added ferrous ammonium sulfate binds IscX much more avidly than does Fe(3+) from added ferric ammonium citrate and that Fe(2+) strengthens the interaction between IscX and IscU. We found that the addition of IscX to the IscU-IscS binary complex led to the formation of a ternary complex with reduced cysteine desulfurase activity, and we determined a low-resolution model for that complex from a combination of NMR and SAXS data. We postulate that the inhibition of cysteine desulfurase activity by IscX serves to reduce unproductive conversion of cysteine to alanine. By incorporating these new findings with results from prior studies, we propose a detailed mechanism for Fe-S cluster assembly in which IscX serves both as a donor of Fe(2+) and as a regulator of cysteine desulfurase activity.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Ferro/química , Enxofre/química , Sítios de Ligação , Liases de Carbono-Enxofre/química , Reagentes de Ligações Cruzadas , Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro/química , Enxofre/metabolismo , Frataxina
12.
J Biol Chem ; 288(40): 28755-70, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23940031

RESUMO

Human ISCU is the scaffold protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis and transfer. NMR spectra have revealed that ISCU populates two conformational states; that is, a more structured state (S) and a partially disordered state (D). We identified two single amino acid substitutions (D39V and N90A) that stabilize the S-state and two (D39A and H105A) that stabilize the D-state. We isolated the two constituent proteins of the human cysteine desulfurase complex (NFS1 and ISD11) separately and used NMR spectroscopy to investigate their interaction with ISCU. We found that ISD11 does not interact directly with ISCU. By contrast, NFS1 binds preferentially to the D-state of ISCU as does the NFS1-ISD11 complex. An in vitro Fe-S cluster assembly assay showed that [2Fe-2S] and [4Fe-4S] clusters are assembled on ISCU when catalyzed by NFS1 alone and at a higher rate when catalyzed by the NFS1-ISD11 complex. The DnaK-type chaperone (mtHSP70) and DnaJ-type co-chaperone (HSC20) are involved in the transfer of clusters bound to ISCU to acceptor proteins in an ATP-dependent reaction. We found that the ATPase activity of mtHSP70 is accelerated by HSC20 and further accelerated by HSC20 plus ISCU. NMR studies have shown that mtHSP70 binds preferentially to the D-state of ISCU and that HSC20 binds preferentially to the S-state of ISCU.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Bioensaio , Cromatografia em Gel , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Humanos , Proteínas Reguladoras de Ferro/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
13.
J Am Chem Soc ; 135(22): 8117-20, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23682711

RESUMO

Escherichia coli [2Fe-2S]-ferredoxin (Fdx) is encoded by the isc operon along with other proteins involved in the 'house-keeping' mechanism of iron-sulfur cluster biogenesis. Although it has been proposed that Fdx supplies electrons to reduce sulfane sulfur (S(0)) produced by the cysteine desulfurase (IscS) to sulfide (S(2-)) as required for the assembly of Fe-S clusters on the scaffold protein (IscU), direct experimental evidence for the role of Fdx has been lacking. Here, we show that Fdx (in either oxidation state) interacts directly with IscS. The interaction face on Fdx was found to include residues close to its Fe-S cluster. In addition, C328 of IscS, the residue known to pick up sulfur from the active site of IscS and deliver it to the Cys residues of IscU, formed a disulfide bridge with Fdx in the presence of an oxidizing agent. Electrons from reduced Fdx were transferred to IscS only in the presence of l-cysteine, but not to the C328S variant. We found that Fdx, IscU, and CyaY (the bacterial frataxin) compete for overlapping binding sites on IscS. This mutual exclusion explains the mechanism by which CyaY inhibits Fe-S cluster biogenesis. These results (1) show that reduced Fdx supplies one electron to the IscS complex as S(0) is produced by the enzymatic conversion of Cys to Ala and (2) explain the role of Fdx as a member of the isc operon.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Elétrons , Ferredoxinas/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Sítios de Ligação , Liases de Carbono-Enxofre/química , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/metabolismo , Ferredoxinas/química , Ferro/química , Proteínas de Ligação ao Ferro/química , Modelos Moleculares , Enxofre/química , Frataxina
14.
FEBS Lett ; 587(8): 1172-9, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23333622

RESUMO

IscU from Escherichia coli, the scaffold protein for iron-sulfur cluster biosynthesis and delivery, populates a complex energy landscape. IscU exists as two slowly interconverting species: one (S) is largely structured with all four peptidyl-prolyl bonds trans; the other (D) is partly disordered but contains an ordered domain that stabilizes two cis peptidyl-prolyl peptide bonds. At pH 8.0, the S-state is maximally populated at 25 °C, but its population decreases at higher or lower temperatures or at lower pH. The D-state binds preferentially to the cysteine desulfurase (IscS), which generates and transfers sulfur to IscU cysteine residues to form persulfides. The S-state is stabilized by Fe-S cluster binding and interacts preferentially with the DnaJ-type co-chaperone (HscB), which targets the holo-IscU:HscB complex to the DnaK-type chaperone (HscA) in its ATP-bound from. HscA is involved in delivery of Fe-S clusters to acceptor proteins by a mechanism dependent on ATP hydrolysis. Upon conversion of ATP to ADP, HscA binds the D-state of IscU ensuring release of the cluster and HscB. These findings have led to a more complete model for cluster biosynthesis and delivery.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/química , Conformação Proteica , Sequência de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Enxofre/metabolismo
15.
J Biol Chem ; 287(37): 31406-13, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22782893

RESUMO

The Escherichia coli protein IscU serves as the scaffold for Fe-S cluster assembly and the vehicle for Fe-S cluster transfer to acceptor proteins, such as apoferredoxin. IscU populates two conformational states in solution, a structured conformation (S) that resembles the conformation of the holoprotein IscU-[2Fe-2S] and a dynamically disordered conformation (D) that does not bind metal ions. NMR spectroscopic results presented here show that the specialized Hsp70 chaperone (HscA), alone or as the HscA-ADP complex, preferentially binds to and stabilizes the D-state of IscU. IscU is released when HscA binds ATP. By contrast, the J-protein HscB binds preferentially to the S-state of IscU. Consistent with these findings, we propose a mechanism in which cluster transfer is coupled to hydrolysis of ATP bound to HscA, conversion of IscU to the D-state, and release of HscB.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico/química , Proteínas Ferro-Enxofre/química , Complexos Multiproteicos/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica
16.
Proteins ; 73(1): 241-53, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18433060

RESUMO

The crystal structure of the protein product of the gene locus At1g05000, a hypothetical protein from A. thaliana, was determined by the multiple-wavelength anomalous diffraction method and was refined to an R factor of 20.4% (R(free) = 24.9%) at 3.3 A. The protein adopts the alpha/beta fold found in cysteine phosphatases, a superfamily of phosphatases that possess a catalytic cysteine and form a covalent thiol-phosphate intermediate during the catalytic cycle. In At1g05000, the analogous cysteine (Cys(150)) is located at the bottom of a positively-charged pocket formed by residues that include the conserved arginine (Arg(156)) of the signature active site motif, HCxxGxxRT. Of 74 model phosphatase substrates tested, purified recombinant At1g05000 showed highest activity toward polyphosphate (poly-P(12-13)) and deoxyribo- and ribonucleoside triphosphates, and less activity toward phosphoenolpyruvate, phosphotyrosine, phosphotyrosine-containing peptides, and phosphatidyl inositols. Divalent metal cations were not required for activity and had little effect on the reaction.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Domínio Catalítico , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Monoéster Fosfórico Hidrolases/genética , Alinhamento de Sequência , Especificidade por Substrato
17.
J Struct Funct Genomics ; 8(4): 153-66, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17985212

RESUMO

A simple approach that allows cost-effective automated purification of recombinant proteins in levels sufficient for functional characterization or structural studies is described. Studies with four human stem cell proteins, an engineered version of green fluorescent protein, and other proteins are included. The method combines an expression vector (pVP62K) that provides in vivo cleavage of an initial fusion protein, a factorial designed auto-induction medium that improves the performance of small-scale production, and rapid, automated metal affinity purification of His8-tagged proteins. For initial small-scale production screening, single colony transformants were grown overnight in 0.4 ml of auto-induction medium, produced proteins were purified using the Promega Maxwell 16, and purification results were analyzed by Caliper LC90 capillary electrophoresis. The yield of purified [U-15N]-His8-Tcl-1 was 7.5 microg/ml of culture medium, of purified [U-15N]-His8-GFP was 68 microg/ml, and of purified selenomethione-labeled AIA-GFP (His8 removed by treatment with TEV protease) was 172 microg/ml. The yield information obtained from a successful automated purification from 0.4 ml was used to inform the decision to scale-up for a second meso-scale (10-50 ml) cell growth and automated purification. 1H-15N NMR HSQC spectra of His8-Tcl-1 and of His8-GFP prepared from 50 ml cultures showed excellent chemical shift dispersion, consistent with well folded states in solution suitable for structure determination. Moreover, AIA-GFP obtained by proteolytic removal of the His8 tag was subjected to crystallization screening, and yielded crystals under several conditions. Single crystals were subsequently produced and optimized by the hanging drop method. The structure was solved by molecular replacement at a resolution of 1.7 A. This approach provides an efficient way to carry out several key target screening steps that are essential for successful operation of proteomics pipelines with eukaryotic proteins: examination of total expression, determination of proteolysis of fusion tags, quantification of the yield of purified protein, and suitability for structure determination.


Assuntos
Células Eucarióticas/química , Proteínas/isolamento & purificação , Sequência de Aminoácidos , Animais , Automação , Sequência de Bases , Cromatografia de Afinidade , Cristalização , Eletroforese em Gel de Ágar/métodos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/isolamento & purificação , Humanos , Camundongos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Plasmídeos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/isolamento & purificação , Homologia de Sequência do Ácido Nucleico , Xenopus laevis
18.
Proteins ; 57(3): 618-25, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15382226

RESUMO

Understanding the structural origins of differences in reduction potentials is crucial to understanding how various electron transfer proteins modulate their reduction potentials and how they evolve for diverse functional roles. Here, the high-resolution structures of several Clostridium pasteurianum rubredoxin (Cp Rd) variants with changes in the vicinity of the redox site are reported in order to increase this understanding. Our crystal structures of [V44L] (at 1.8 A resolution), [V44A] (1.6 A), [V44G] (2.0 A) and [V44A, G45P] (1.5 A) Rd (all in their oxidized states) show that there is a gradual decrease in the distance between Fe and the amide nitrogen of residue 44 upon reduction in the size of the side chain of residue 44; the decrease occurs from leucine to valine, alanine or glycine and is accompanied by a gradual increase in their reduction potentials. Mutation of Cp Rd at position 44 also changes the hydrogen-bond distance between the amide nitrogen of residue 44 and the sulfur of cysteine 42 in a size-dependent manner. Our results suggest that residue 44 is an important determinant of Rd reduction potential in a manner dictated by side-chain size. Along with the electric dipole moment of the 43-44 peptide bond and the 44-42 NH--S type hydrogen bond, a modulation mechanism for solvent accessibility through residue 41 might regulate the redox reaction of the Rds.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clostridium/química , Mutação/genética , Rubredoxinas/química , Rubredoxinas/metabolismo , Valina/genética , Proteínas de Bactérias/genética , Clostridium/genética , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Oxirredução , Maleabilidade , Conformação Proteica , Rubredoxinas/genética , Solventes/química , Solventes/metabolismo , Relação Estrutura-Atividade , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA