Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7317, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147496

RESUMO

Chordomas are rare slow growing tumors, arising from embryonic remnants of notochord with a close predilection for the axial skeleton. Recurrence is common and no effective standard medical therapy exists. Thymidylate synthase (TS), an intracellular enzyme, is a key rate-limiting enzyme of DNA biosynthesis and repair which is primarily active in proliferating and metabolically active cells. Eighty-four percent of chordoma samples had loss of TS expression which may predict response to anti-folates. Pemetrexed suppresses tumor growth by inhibiting enzymes involved in folate metabolism, resulting in decreased availability of thymidine which is necessary for DNA synthesis. Pemetrexed inhibited growth in a preclinical mouse xenograft model of human chordoma. We report three cases of metastatic chordoma that had been heavily treated previously with a variety of standard therapies with poor response. In two cases, pemetrexed was added and objective responses were observed on imaging with one patient on continuous treatment for > 2 years with continued shrinkage. One case demonstrated tumor growth after treatment with pemetrexed. The two cases which had a favorable response had a loss of TS expression, whereas the one case with progressive disease had TS present. These results demonstrate the activity of pemetrexed in recurrent chordoma and warrant a prospective clinical trial which is ongoing (NCT03955042).


Assuntos
Cordoma , Humanos , Animais , Camundongos , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Cordoma/tratamento farmacológico , Estudos Prospectivos , Guanina/farmacologia , Guanina/uso terapêutico , Glutamatos/uso terapêutico , Glutamatos/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , DNA , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
2.
Nat Commun ; 14(1): 1933, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024492

RESUMO

Identifying the spectrum of genes required for cancer cell survival can reveal essential cancer circuitry and therapeutic targets, but such a map remains incomplete for many cancer types. We apply genome-scale CRISPR-Cas9 loss-of-function screens to map the landscape of selectively essential genes in chordoma, a bone cancer with few validated targets. This approach confirms a known chordoma dependency, TBXT (T; brachyury), and identifies a range of additional dependencies, including PTPN11, ADAR, PRKRA, LUC7L2, SRRM2, SLC2A1, SLC7A5, FANCM, and THAP1. CDK6, SOX9, and EGFR, genes previously implicated in chordoma biology, are also recovered. We find genomic and transcriptomic features that predict specific dependencies, including interferon-stimulated gene expression, which correlates with ADAR dependence and is elevated in chordoma. Validating the therapeutic relevance of dependencies, small-molecule inhibitors of SHP2, encoded by PTPN11, have potent preclinical efficacy against chordoma. Our results generate an emerging map of chordoma dependencies to enable biological and therapeutic hypotheses.


Assuntos
Neoplasias Ósseas , Cordoma , Humanos , Cordoma/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Genes Essenciais , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas Reguladoras de Apoptose/genética , DNA Helicases/metabolismo
3.
Front Oncol ; 12: 1009193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387127

RESUMO

The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.

4.
Structure ; 26(2): 270-281.e4, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358026

RESUMO

In the active HER receptor dimers, kinases play distinct roles; one is the catalytically active kinase and the other is its allosteric activator. This specialization enables signaling by the catalytically inactive HER3, which functions exclusively as an allosteric activator upon heterodimerization with other HER receptors. It is unclear whether the allosteric activation mechanism evolved before HER receptors functionally specialized. We determined the crystal structure of the kinase domain of the only EGF receptor in Caenorhabditis elegans, LET-23. Our structure of a non-human EGFR kinase reveals autoinhibitory features conserved in the human counterpart. Strikingly, mutations within the putative allosteric dimer interface abrogate activity of the isolated LET-23 kinase and of the full-length receptor despite these regions being only partially conserved with human EGFR. Our results indicate that ancestral EGFRs have built-in features that poise them for allosteric activation that could facilitate emergence of the catalytically dead, yet functional, orthologs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Receptores ErbB/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans , Dimerização , Fosforilação
5.
Cell ; 171(3): 683-695.e18, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28988771

RESUMO

Epidermal growth factor receptor (EGFR) regulates many crucial cellular programs, with seven different activating ligands shaping cell signaling in distinct ways. Using crystallography and other approaches, we show how the EGFR ligands epiregulin (EREG) and epigen (EPGN) stabilize different dimeric conformations of the EGFR extracellular region. As a consequence, EREG or EPGN induce less stable EGFR dimers than EGF-making them partial agonists of EGFR dimerization. Unexpectedly, this weakened dimerization elicits more sustained EGFR signaling than seen with EGF, provoking responses in breast cancer cells associated with differentiation rather than proliferation. Our results reveal how responses to different EGFR ligands are defined by receptor dimerization strength and signaling dynamics. These findings have broad implications for understanding receptor tyrosine kinase (RTK) signaling specificity. Our results also suggest parallels between partial and/or biased agonism in RTKs and G-protein-coupled receptors, as well as new therapeutic opportunities for correcting RTK signaling output.


Assuntos
Epigen/química , Epirregulina/química , Receptores ErbB/química , Receptores ErbB/metabolismo , Cristalografia por Raios X , Epigen/metabolismo , Epirregulina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética , Ligantes , Modelos Moleculares , Multimerização Proteica
6.
Cancer Cell ; 29(4): 423-425, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27070691

RESUMO

Effective clinical application of conformationally selective kinase inhibitors requires tailoring drug choice to the tumor's activating mutation(s). In this issue of Cancer Cell, Foster et al. (2016) describe how activating deletions in BRAF, EGFR, and HER2 cause primary resistance to common inhibitors, suggesting strategies for improved inhibitor selection.


Assuntos
Mutação , Neoplasias/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Deleção de Sequência
7.
Nat Commun ; 6: 7380, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26060020

RESUMO

Ligand-induced receptor dimerization has traditionally been viewed as the key event in transmembrane signalling by epidermal growth factor receptors (EGFRs). Here we show that the Caenorhabditis elegans EGFR orthologue LET-23 is constitutively dimeric, yet responds to its ligand LIN-3 without changing oligomerization state. SAXS and mutational analyses further reveal that the preformed dimer of the LET-23 extracellular region is mediated by its domain II dimerization arm and resembles other EGFR extracellular dimers seen in structural studies. Binding of LIN-3 induces only minor structural rearrangements in the LET-23 dimer to promote signalling. Our results therefore argue that EGFR can be regulated by allosteric changes within an existing receptor dimer--resembling signalling by insulin receptor family members, which share similar extracellular domain compositions but form covalent dimers.


Assuntos
Receptores ErbB/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Linhagem Celular , Dimerização , Drosophila melanogaster , Receptores ErbB/química , Ligantes
8.
Curr Opin Struct Biol ; 29: 95-101, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25460273

RESUMO

Numerous crystal structures have been reported for the isolated extracellular region and tyrosine kinase domain of the epidermal growth factor receptor (EGFR) and its relatives, in different states of activation and bound to a variety of inhibitors used in cancer therapy. The next challenge is to put these structures together accurately in functional models of the intact receptor in its membrane environment. The intact EGFR has been studied using electron microscopy, chemical biology methods, biochemically, and computationally. The distinct approaches yield different impressions about the structural modes of communication between extracellular and intracellular regions. They highlight possible differences between ligands, and also underline the need to understand how the receptor interacts with the membrane itself.


Assuntos
Receptores ErbB/química , Fator de Crescimento Epidérmico/química , Humanos , Ligantes , Microscopia Eletrônica , Multimerização Proteica
9.
Biochemistry ; 50(41): 8792-803, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21894979

RESUMO

In this work, electron paramagnetic resonance (EPR) spectroscopy and X-ray crystallography were used to examine the origins of EPR line shapes from spin-labels at the protein-lipid interface on the ß-barrel membrane protein BtuB. Two atomic-resolution structures were obtained for the methanethiosulfonate spin-label derivatized to cysteines on the membrane-facing surface of BtuB. At one of these sites, position 156, the label side chain resides in a pocket formed by neighboring residues; however, it extends from the protein surface and yields a single-component EPR spectrum in the crystal that results primarily from fast rotation about the fourth and fifth bonds linking the spin-label to the protein backbone. In lipid bilayers, site 156 yields a multicomponent spectrum resulting from different rotameric states of the labeled side chain. Moreover, changes in the lipid environment, such as variations in bilayer thickness, modulate the EPR spectrum by modulating label rotamer populations. At a second site, position 371, the labeled side chain interacts with a pocket on the protein surface, leading to a highly immobilized single-component EPR spectrum that is not sensitive to hydrocarbon thickness. This spectrum is similar to that seen at other sites that are deep in the hydrocarbon, such as position 170. This work indicates that the rotameric states of spin-labels on exposed hydrocarbon sites are sensitive to the environment at the protein-hydrocarbon interface, and that this environment may modulate weak interactions between the labeled side chain and the protein surface. In the case of BtuB, lipid acyl chain packing is not symmetric around the ß-barrel, and EPR spectra from labeled hydrocarbon-facing sites in BtuB may reflect this asymmetry. In addition to facilitating the interpretation of EPR spectra of membrane proteins, these results have important implications for the use of long-range distance restraints in protein structure refinement that are obtained from spin-labels.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas de Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Modelos Moleculares , Mutagênese , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Solventes , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA