Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuron ; 78(5): 799-806, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23764285

RESUMO

Systems of coupled oscillators abound in nature. How they establish stable phase relationships under diverse conditions is fundamentally important. The mammalian suprachiasmatic nucleus (SCN) is a self-sustained, synchronized network of circadian oscillators that coordinates daily rhythms in physiology and behavior. To elucidate the underlying topology and signaling mechanisms that modulate circadian synchrony, we discriminated the firing of hundreds of SCN neurons continuously over days. Using an analysis method to identify functional interactions between neurons based on changes in their firing, we characterized a GABAergic network comprised of fast, excitatory, and inhibitory connections that is both stable over days and changes in strength with time of day. By monitoring PERIOD2 protein expression, we provide the first evidence that these millisecond-level interactions actively oppose circadian synchrony and inject jitter into daily rhythms. These results provide a mechanism by which circadian oscillators can tune their phase relationships under different environmental conditions.


Assuntos
Ritmo Circadiano/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Periodicidade , Ácido gama-Aminobutírico/metabolismo , Potenciais de Ação/genética , Animais , Mapeamento Encefálico , Ritmo Circadiano/genética , Colchicina/farmacologia , Antagonistas GABAérgicos/farmacologia , Luciferases/genética , Medições Luminescentes , Camundongos , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Proteínas Circadianas Period/genética , Piridazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Núcleo Supraquiasmático/citologia , Fatores de Tempo , Moduladores de Tubulina/farmacologia , Peptídeo Intestinal Vasoativo/deficiência
2.
Handb Exp Pharmacol ; (217): 105-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23604477

RESUMO

The master coordinator of daily schedules in mammals, located in the ventral hypothalamus, is the suprachiasmatic nucleus (SCN). This relatively small population of neurons and glia generates circadian rhythms in physiology and behavior and synchronizes them to local time. Recent advances have begun to define the roles of specific cells and signals (e.g., peptides, amino acids, and purine derivatives) within this network that generate and synchronize daily rhythms. Here we focus on the best-studied signals between neurons and between glia in the mammalian circadian system with an emphasis on time-of-day pharmacology. Where possible, we highlight how commonly used drugs affect the circadian system.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Arginina Vasopressina/fisiologia , Humanos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Peptídeo Intestinal Vasoativo/fisiologia , Ácido gama-Aminobutírico/fisiologia
3.
J Neurophysiol ; 110(1): 103-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23576702

RESUMO

Picrotoxin is extensively and specifically used to inhibit GABAA receptors and other members of the Cys-loop receptor superfamily. We find that picrotoxin acts independently of known Cys-loop receptors to shorten the period of the circadian clock markedly by specifically advancing the accumulation of PERIOD2 protein. We show that this mechanism is surprisingly tetrodotoxin-insensitive, and the effect is larger than any known chemical or genetic manipulation. Notably, our results indicate that the circadian target of picrotoxin is common to a variety of human and rodent cell types but not Drosophila, thereby ruling out all conserved Cys-loop receptors and known regulators of mammalian PERIOD protein stability. Given that the circadian clock modulates significant aspects of cell physiology including synaptic plasticity, these results have immediate and broad experimental implications. Furthermore, our data point to the existence of an important and novel target within the mammalian circadian timing system.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Proteínas Circadianas Period/metabolismo , Picrotoxina/farmacologia , Animais , Linhagem Celular , Relógios Circadianos/fisiologia , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/fisiologia , Drosophila , Humanos , Técnicas In Vitro , Camundongos , Núcleo Supraquiasmático/efeitos dos fármacos , Núcleo Supraquiasmático/fisiologia
4.
Endocrinology ; 146(10): 4491-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16020480

RESUMO

Cannabinoids (CBs) exert untoward effects on reproduction by reducing LH secretion and suppressing gonadal function. Recent evidence suggests these effects are due primarily to hypothalamic dysfunction; however, the mechanism is obscure. Using immortalized hypothalamic GnRH neurons, we find these cells produce and secrete at least two different endocannabinoids. After release, 2-arachidonyl monoacylglycerol and anandamide are rapidly transported into GnRH neurons and are degraded to other lipids by fatty-acid amide hydrolase. The immortalized GnRH neurons also possess CB1 and CB2 receptors that are coupled to Gi/Go proteins whose activation leads to inhibition of GnRH secretion. In perifusion experiments, CBs block pulsatile release of GnRH. When a CB receptor agonist is delivered into the third ventricle of adult female mice, estrous cycles are prolonged by at least 2 d. Although in situ hybridization experiments suggest either that GnRH neurons in vivo do not possess CB1 receptors or that they are very low, transcripts are localized in close proximity to these neurons. Inasmuch as GnRH neurons in vivo possess G protein receptors that are coupled to phospholipase C and increased intracellular Ca2+, these same neurons should also be able to synthesize endocannabinoids. These lipids, in turn, could bind to CB receptors on neighboring cells, and perhaps GnRH neurons, to exert feedback control over GnRH function. This network could serve as a novel mechanism for regulating GnRH secretion where reproductive functions as diverse as the onset of puberty, timing of ovulation, duration of lactational infertility, and initiation/persistence of menopause may be affected.


Assuntos
Canabinoides/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Animais , Linhagem Celular , Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/genética , Hipotálamo , Cinética , Macrófagos , Camundongos , Neurônios/efeitos dos fármacos , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA