Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Clin Invest ; 133(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37471145

RESUMO

BACKGROUNDCellular cholesterol efflux capacity (CEC) is a better predictor of cardiovascular disease (CVD) events than HDL-cholesterol (HDL-C) but is not suitable as a routine clinical assay.METHODSWe developed an HDL-specific phospholipid efflux (HDL-SPE) assay to assess HDL functionality based on whole plasma HDL apolipoprotein-mediated solubilization of fluorescent phosphatidylethanolamine from artificial lipid donor particles. We first assessed the association of HDL-SPE with prevalent coronary artery disease (CAD): study I included NIH severe-CAD (n = 50) and non-CAD (n = 50) participants, who were frequency matched for sex, BMI, type 2 diabetes mellitus, and smoking; study II included Japanese CAD (n = 70) and non-CAD (n = 154) participants. We also examined the association of HDL-SPE with incident CVD events in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study comparing 340 patients with 340 controls individually matched for age, sex, smoking, and HDL-C levels.RESULTSReceiver operating characteristic curves revealed stronger associations of HDL-SPE with prevalent CAD. The AUCs in study I were as follows: HDL-SPE, 0.68; apolipoprotein A-I (apoA-I), 0.62; HDL-C, 0.63; and CEC, 0.52. The AUCs in study II were as follows: HDL-SPE, 0.83; apoA-I, 0.64; and HDL-C, 0.53. Also longitudinally, HDL-SPE was significantly associated with incident CVD events independent of traditional risk factors with ORs below 0.2 per SD increment in the PREVEND study (P < 0.001).CONCLUSIONHDL-SPE could serve as a routine clinical assay for improving CVD risk assessment and drug discovery.TRIAL REGISTRATIONClinicalTrials.gov NCT01621594.FUNDINGNHLBI Intramural Research Program, NIH (HL006095-06).


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Humanos , Lipoproteínas HDL , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Apolipoproteína A-I , HDL-Colesterol , Fosfolipídeos
2.
Clin Cancer Res ; 29(18): 3612-3621, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37227160

RESUMO

PURPOSE: To determine the role of CD49d for response to Bruton's tyrosine kinase inhibitors (BTKi) in patients with chronic lymphocytic leukemia (CLL). PATIENTS AND METHODS: In patients treated with acalabrutinib (n = 48), CD49d expression, VLA-4 integrin activation, and tumor transcriptomes of CLL cells were assessed. Clinical responses to BTKis were investigated in acalabrutinib- (n = 48; NCT02337829) and ibrutinib-treated (n = 73; NCT01500733) patients. RESULTS: In patients treated with acalabrutinib, treatment-induced lymphocytosis was comparable for both subgroups but resolved more rapidly for CD49d+ cases. Acalabrutinib inhibited constitutive VLA-4 activation but was insufficient to block BCR and CXCR4-mediated inside-out activation. Transcriptomes of CD49d+ and CD49d- cases were compared using RNA sequencing at baseline and at 1 and 6 months on treatment. Gene set enrichment analysis revealed increased constitutive NF-κB and JAK-STAT signaling, enhanced survival, adhesion, and migratory capacity in CD49d+ over CD49d- CLL that was maintained during therapy. In the combined cohorts of 121 BTKi-treated patients, 48 (39.7%) progressed on treatment with BTK and/or PLCG2 mutations detected in 87% of CLL progressions. Consistent with a recent report, homogeneous and bimodal CD49d-positive cases (the latter having concurrent CD49d+ and CD49d- CLL subpopulations, irrespective of the traditional 30% cutoff value) had a shorter time to progression of 6.6 years, whereas 90% of cases homogenously CD49d- were estimated progression-free at 8 years (P = 0.0004). CONCLUSIONS: CD49d/VLA-4 emerges as a microenvironmental factor that contributes to BTKi resistance in CLL. The prognostic value of CD49d is improved by considering bimodal CD49d expression. See related commentary by Tissino et al., p. 3560.


Assuntos
Integrina alfa4beta1 , Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Intervalo Livre de Progressão , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Relevância Clínica , Inibidores de Proteínas Quinases/farmacologia
3.
Curr Opin Lipidol ; 31(2): 71-79, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32073411

RESUMO

PURPOSE OF REVIEW: To review recent lecithin:cholesterol acyltransferas (LCAT)-based therapeutic approaches for atherosclerosis, acute coronary syndrome, and LCAT deficiency disorders. RECENT FINDINGS: A wide variety of approaches to using LCAT as a novel therapeutic target have been proposed. Enzyme replacement therapy with recombinant human LCAT is the most clinically advanced therapy for atherosclerosis and familial LCAT deficiency (FLD), with Phase I and Phase 2A clinical trials recently completed. Liver-directed LCAT gene therapy and engineered cell therapies are also another promising approach. Peptide and small molecule activators have shown efficacy in early-stage preclinical studies. Finally, lifestyle modifications, such as fat-restricted diets, cessation of cigarette smoking, and a diet rich in antioxidants may potentially suppress lipoprotein abnormalities in FLD patients and help preserve LCAT activity and renal function but have not been adequately tested. SUMMARY: Preclinical and early-stage clinical trials demonstrate the promise of novel LCAT therapies as HDL-raising agents that may be used to treat not only FLD but potentially also atherosclerosis and other disorders with low or dysfunctional HDL.


Assuntos
Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Animais , Terapia de Reposição de Enzimas/métodos , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/tratamento farmacológico , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/deficiência , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo
4.
Sci Transl Med ; 12(528)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996466

RESUMO

Recent genetic studies have established that hypertriglyceridemia (HTG) is causally related to cardiovascular disease, making it an active area for drug development. We describe a strategy for lowering triglycerides (TGs) with an apolipoprotein C-II (apoC-II) mimetic peptide called D6PV that activates lipoprotein lipase (LPL), the main plasma TG-hydrolyzing enzyme, and antagonizes the TG-raising effect of apoC-III. The design of D6PV was motivated by a combination of all-atom molecular dynamics simulation of apoC-II on the Anton 2 supercomputer, structural prediction programs, and biophysical techniques. Efficacy of D6PV was assessed ex vivo in human HTG plasma and was found to be more potent than full-length apoC-II in activating LPL. D6PV markedly lowered TG by more than 80% within a few hours in both apoC-II-deficient mice and hAPOC3-transgenic (Tg) mice. In hAPOC3-Tg mice, D6PV treatment reduced plasma apoC-III by 80% and apoB by 65%. Furthermore, low-density lipoprotein (LDL) cholesterol did not accumulate but rather was decreased by 10% when hAPOC3-Tg mice lacking the LDL-receptor (hAPOC3-Tg × Ldlr-/- ) were treated with the peptide. D6PV lowered TG by 50% in whole-body inducible Lpl knockout (iLpl-/- ) mice, confirming that it can also act independently of LPL. D6PV displayed good subcutaneous bioavailability of about 80% in nonhuman primates. Because it binds to high-density lipoproteins, which serve as a long-term reservoir, it also has an extended terminal half-life (42 to 50 hours) in nonhuman primates. In summary, D6PV decreases plasma TG by acting as a dual apoC-II mimetic and apoC-III antagonist, thereby demonstrating its potential as a treatment for HTG.


Assuntos
Apolipoproteína C-III/antagonistas & inibidores , Apolipoproteína C-II/agonistas , Peptídeos/farmacologia , Triglicerídeos/sangue , Animais , Modelos Animais de Doenças , Feminino , Meia-Vida , Humanos , Hipertrigliceridemia/sangue , Hipertrigliceridemia/tratamento farmacológico , Lipólise , Lipase Lipoproteica/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/farmacocinética , Peptídeos/uso terapêutico , Primatas
5.
Artigo em Inglês | MEDLINE | ID: mdl-31676439

RESUMO

OBJECTIVE: Highly elevated plasma levels of interleukin-10 (IL-10) are causally associated with "Disappearing HDL Syndrome" and low plasma LDL-cholesterol, but the underlying mechanism is poorly understood. Fluid-phase endocytosis, a process highly dependent on actin dynamics, enables cells to internalize relatively high amounts of extracellular fluids and solutes. We sought to investigate whether IL-10 induces lipoprotein uptake by fluid-phase endocytosis in macrophages. METHODS AND RESULTS: Macrophages (RAW264.7, Kupffer and human) were incubated with vehicle (PBS) or IL-10 (20 ng/ml) for 7 days. Uptake of HDL, LDL, and/or fluid-phase endocytosis probes (albumin-Alexa680®, 70 kDa FITC-Dextran and Lucifer Yellow, LY) was evaluated by FACS. Intracellular cofilin and phosphorylated cofilin (p-cofilin) levels were determined by immunoblotting. Macrophage uptake of lipoproteins and probes was non-saturable and increased after IL-10 incubation (p < 0.0001). Furthermore, pre-incubation with fluid-phase endocytosis inhibitors (LY294002, Latrunculin A, and Amiloride) significantly reduced uptake (p < 0.05). IL-10 increased the cofilin/p-cofilin ratio (p = 0.021), signifying increased cofilin activation and hence filamentous actin. Consistently, phalloidin staining revealed increased filamentous actin in macrophages after IL-10 treatment (p = 0.0018). Finally, RNA-seq analysis demonstrated enrichment of gene sets related to actin filament dynamics, membrane ruffle formation and endocytosis in IL-10-treated macrophages (p < 0.05). IL-10 did not alter mRNA levels of Ldlr, Vldlr, Scarb1, Cd36 or Lrp1. In primary human monocyte-derived macrophages and murine Kupffer cells, IL-10 incubation also increased uptake of lipoproteins, albumin and LY (p < 0.01). CONCLUSIONS: Interleukin-10 induces the uptake of HDL and LDL by fluid-phase endocytosis by increasing actin-filament rearrangement in macrophages, thus providing a plausible mechanism contributing to "Disappearing HDL Syndrome".


Assuntos
Interleucina-10/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Aterosclerose/sangue , Aterosclerose/metabolismo , Células Cultivadas , Cofilina 1/metabolismo , Endocitose , Humanos , Camundongos , Cultura Primária de Células , Proteínas Recombinantes/metabolismo
6.
Atherosclerosis ; 267: 49-60, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29100061

RESUMO

Apolipoprotein C-II (apoC-II) is a small exchangeable apolipoprotein found on triglyceride-rich lipoproteins (TRL), such as chylomicrons (CM) and very low-density lipoproteins (VLDL), and on high-density lipoproteins (HDL), particularly during fasting. ApoC-II plays a critical role in TRL metabolism by acting as a cofactor of lipoprotein lipase (LPL), the main enzyme that hydrolyses plasma triglycerides (TG) on TRL. Here, we present an overview of the role of apoC-II in TG metabolism, emphasizing recent novel findings regarding its transcriptional regulation and biochemistry. We also review the 24 genetic mutations in the APOC2 gene reported to date that cause hypertriglyceridemia (HTG). Finally, we describe the clinical presentation of apoC-II deficiency and assess the current therapeutic approaches, as well as potential novel emerging therapies.


Assuntos
Apolipoproteína C-II/genética , Apolipoproteína C-II/metabolismo , Triglicerídeos/metabolismo , Animais , Apolipoproteína C-II/deficiência , Quilomícrons/metabolismo , Regulação da Expressão Gênica , Humanos , Hidrólise , Mucosa Intestinal/metabolismo , Lipólise , Lipase Lipoproteica/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas HDL/sangue , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Camundongos , Família Multigênica , Mutação , Ratos , Transcrição Gênica
7.
J Pharmacol Exp Ther ; 362(2): 306-318, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28576974

RESUMO

Lecithin:cholesterol acyltransferase (LCAT) catalyzes plasma cholesteryl ester formation and is defective in familial lecithin:cholesterol acyltransferase deficiency (FLD), an autosomal recessive disorder characterized by low high-density lipoprotein, anemia, and renal disease. This study aimed to investigate the mechanism by which compound A [3-(5-(ethylthio)-1,3,4-thiadiazol-2-ylthio)pyrazine-2-carbonitrile], a small heterocyclic amine, activates LCAT. The effect of compound A on LCAT was tested in human plasma and with recombinant LCAT. Mass spectrometry and nuclear magnetic resonance were used to determine compound A adduct formation with LCAT. Molecular modeling was performed to gain insight into the effects of compound A on LCAT structure and activity. Compound A increased LCAT activity in a subset (three of nine) of LCAT mutations to levels comparable to FLD heterozygotes. The site-directed mutation LCAT-Cys31Gly prevented activation by compound A. Substitution of Cys31 with charged residues (Glu, Arg, and Lys) decreased LCAT activity, whereas bulky hydrophobic groups (Trp, Leu, Phe, and Met) increased activity up to 3-fold (P < 0.005). Mass spectrometry of a tryptic digestion of LCAT incubated with compound A revealed a +103.017 m/z adduct on Cys31, consistent with the addition of a single hydrophobic cyanopyrazine ring. Molecular modeling identified potential interactions of compound A near Cys31 and structural changes correlating with enhanced activity. Functional groups important for LCAT activation by compound A were identified by testing compound A derivatives. Finally, sulfhydryl-reactive ß-lactams were developed as a new class of LCAT activators. In conclusion, compound A activates LCAT, including some FLD mutations, by forming a hydrophobic adduct with Cys31, thus providing a mechanistic rationale for the design of future LCAT activators.


Assuntos
Cisteína/fisiologia , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Compostos de Sulfidrila/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ativadores de Enzimas/química , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Células HEK293 , Humanos , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Modelos Moleculares , Fosfatidilcolina-Esterol O-Aciltransferase/química , Compostos de Sulfidrila/química
8.
Immunology ; 149(3): 306-319, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27329564

RESUMO

Interleukin-1ß (IL-1ß), a potent pro-inflammatory cytokine, has been implicated in many diseases, including atherosclerosis. Activation of IL-1ß is controlled by a multi-protein complex, the inflammasome. The exact initiating event in atherosclerosis is unknown, but recent work has demonstrated that cholesterol crystals (CC) may promote atherosclerosis development by activation of the inflammasome. High-density lipoprotein (HDL) has consistently been shown to be anti-atherogenic and to have anti-inflammatory effects, but its mechanism of action is unclear. We demonstrate here that HDL is able to suppress IL-1ß secretion in response to cholesterol crystals in THP-1 cells and in human-monocyte-derived macrophages. HDL is able to blunt inflammatory monocyte cell recruitment in vivo following intraperitoneal CC injection in mice. HDL appears to modulate inflammasome activation in several ways. It reduces the loss of lysosomal membrane integrity following the phagocytosis of CC, but the major mechanism for the suppression of inflammasome activation by HDL is decreased expression of pro-IL-1ß and NLRP3, and reducing caspase-1 activation. In summary, we have described a novel anti-inflammatory effect of HDL, namely its ability to suppress inflammasome activation by CC by modulating the expression of several key components of the inflammasome.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Interleucina-1beta/metabolismo , Lipoproteínas HDL/uso terapêutico , Macrófagos/efeitos dos fármacos , Animais , Aterosclerose/imunologia , Linhagem Celular , Colesterol/imunologia , Feminino , Humanos , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
9.
PLoS One ; 11(2): e0150083, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919698

RESUMO

Human familial lecithin:cholesterol acyltransferase (LCAT) deficiency (FLD) is characterized by low HDL, accumulation of an abnormal cholesterol-rich multilamellar particle called lipoprotein-X (LpX) in plasma, and renal disease. The aim of our study was to determine if LpX is nephrotoxic and to gain insight into the pathogenesis of FLD renal disease. We administered a synthetic LpX, nearly identical to endogenous LpX in its physical, chemical and biologic characteristics, to wild-type and Lcat-/- mice. Our in vitro and in vivo studies demonstrated an apoA-I and LCAT-dependent pathway for LpX conversion to HDL-like particles, which likely mediates normal plasma clearance of LpX. Plasma clearance of exogenous LpX was markedly delayed in Lcat-/- mice, which have low HDL, but only minimal amounts of endogenous LpX and do not spontaneously develop renal disease. Chronically administered exogenous LpX deposited in all renal glomerular cellular and matrical compartments of Lcat-/- mice, and induced proteinuria and nephrotoxic gene changes, as well as all of the hallmarks of FLD renal disease as assessed by histological, TEM, and SEM analyses. Extensive in vivo EM studies revealed LpX uptake by macropinocytosis into mouse glomerular endothelial cells, podocytes, and mesangial cells and delivery to lysosomes where it was degraded. Endocytosed LpX appeared to be degraded by both human podocyte and mesangial cell lysosomal PLA2 and induced podocyte secretion of pro-inflammatory IL-6 in vitro and renal Cxl10 expression in Lcat-/- mice. In conclusion, LpX is a nephrotoxic particle that in the absence of Lcat induces all of the histological and functional hallmarks of FLD and hence may serve as a biomarker for monitoring recombinant LCAT therapy. In addition, our studies suggest that LpX-induced loss of endothelial barrier function and release of cytokines by renal glomerular cells likely plays a role in the initiation and progression of FLD nephrosis.


Assuntos
Glomérulos Renais/efeitos dos fármacos , Deficiência da Lecitina Colesterol Aciltransferase/metabolismo , Lipoproteína-X/toxicidade , Proteinúria/etiologia , Animais , Apolipoproteína A-I/metabolismo , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Membrana Basal Glomerular/efeitos dos fármacos , Membrana Basal Glomerular/patologia , Mesângio Glomerular/citologia , Mesângio Glomerular/metabolismo , Mesângio Glomerular/patologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-6/metabolismo , Glomérulos Renais/patologia , Deficiência da Lecitina Colesterol Aciltransferase/patologia , Lipoproteína-X/metabolismo , Lipoproteína-X/farmacocinética , Lipoproteínas HDL/metabolismo , Lisossomos/metabolismo , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Fosfolipases A2/metabolismo , Pinocitose , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/induzido quimicamente , Proteinúria/genética , Proteinúria/patologia
10.
J Clin Lipidol ; 9(1): 81-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25670364

RESUMO

BACKGROUND: Low high-density lipoprotein cholesterol (HDL-C) is a risk factor for coronary artery disease. Investigating mechanisms underlying acquired severe HDL deficiency in noncritically ill patients ("disappearing HDL syndrome") could provide new insights into HDL metabolism. OBJECTIVE: To determine the cause of low HDL-C in patients with severe acquired HDL deficiency. METHODS AND RESULTS: Patients with intravascular large B-cell lymphoma (n = 2), diffuse large B-cell lymphoma (n = 1), and autoimmune lymphoproliferative syndrome (n = 1) presenting with markedly decreased HDL-C, low low-density lipoprotein cholesterol (LDL-C), and elevated triglycerides were identified. The abnormal lipoprotein profile returned to normal after therapy in all 4 patients. All patients were found to have markedly elevated serum interleukin-10 (IL-10) levels that also normalized after therapy. In a cohort of autoimmune lymphoproliferative syndrome patients (n = 93), IL-10 showed a strong inverse correlation with HDL-C (R(2) = 0.3720, P < .0001). A direct causal role for increased serum IL-10 in inducing the observed changes in lipoproteins was established in a randomized, placebo-controlled clinical trial of recombinant human IL-10 in psoriatic arthritis patients (n = 18). Within a week of initiating subcutaneous recombinant human IL-10 injections, HDL-C precipitously decreased to near-undetectable levels. LDL-C also decreased by more than 50% (P < .0001) and triglycerides increased by approximately 2-fold (P < .005). All values returned to baseline after discontinuing IL-10 therapy. CONCLUSION: Increased IL-10 causes severe HDL-C deficiency, low LDL-C, and elevated triglycerides. IL-10 is thus a potent modulator of lipoprotein levels, a potential new biomarker for B-cell disorders, and a novel cause of disappearing HDL syndrome.


Assuntos
HDL-Colesterol/sangue , Dislipidemias/diagnóstico , Interleucina-10/sangue , Adulto , Artrite Psoriásica/tratamento farmacológico , Síndrome Linfoproliferativa Autoimune/sangue , Síndrome Linfoproliferativa Autoimune/diagnóstico , Criança , LDL-Colesterol/sangue , Estudos de Coortes , Dislipidemias/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lactente , Interleucina-10/genética , Interleucina-10/uso terapêutico , Linfoma de Células B/diagnóstico , Linfoma Difuso de Grandes Células B/diagnóstico , Masculino , Pessoa de Meia-Idade , Efeito Placebo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento , Triglicerídeos/sangue , Receptor fas/genética
11.
J Lipid Res ; 45(7): 1197-206, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15121760

RESUMO

The ATP binding cassette (ABC) half-transporters ABCG5 and ABCG8 facilitate biliary and intestinal removal of neutral sterols. Here, we identify a binding site for the orphan nuclear receptor liver receptor homolog-1 (LRH-1) at nt 134-142 of the ABCG5/ABCG8 intergenic region necessary for the activity of both the ABCG5 and ABCG8 promoters. Mutating this LRH-1 binding site reduced promoter activity of the human ABCG5/ABCG8 intergenic region more than 7-fold in HepG2 and Caco2 cells. Electrophoretic mobility shift assays with HepG2 nuclear extracts demonstrated specific binding of LRH-1 to the LRH-1 binding motif in the human ABCG5/ABCG8 intergenic region. LRH-1 overexpression increased promoter activity up to 1.6-fold and 3-fold in Caco2 and 293 cells, respectively. Finally, deoxycholic acid repressed the ABCG5 and ABCG8 promoters, consistent with bile acid regulation via the farnesoid X receptor-small heterodimeric partner-LRH-1 pathway. These results demonstrate that LRH-1 is a positive transcription factor for ABCG5 and ABCG8 and, in conjunction with studies on LRH-1 activation of other promoters, identify LRH-1 as a "master regulator" for genes involved in sterol and bile acid secretion from liver and intestine.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Ligação a DNA/fisiologia , Lipoproteínas/genética , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Ativação Transcricional , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Ácido Desoxicólico/farmacologia , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Esteróis/metabolismo , Fatores de Transcrição/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA