Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Elife ; 122023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37461317

RESUMO

Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.


In order to grow and divide, cells require a variety of sugars. Breaking down sugars provides energy for cells to proliferate and allows them to make more complex molecules, such as DNA. Although this principle also applies to cancer cells, a specific sugar called mannose not only inhibits cancer cell division but also makes them more sensitive to chemotherapy. These anticancer effects of mannose are particularly strong in cells lacking a protein known as MPI, which breaks down mannose. Evidence from honeybees suggests that a combination of mannose and low levels of MPI leads to a build-up of a modified form of mannose, called mannose-6-phosphate, within cells. As a result, pathways required to release energy from glucose become disrupted, proving lethal to these insects. However, it was not clear whether the same processes were responsible for the anticancer effects of mannose. To investigate, Harada et al. removed the gene that encodes the MPI protein in two types of human cancer cells. The experiments showed that mannose treatment was not lethal to these cells but overall slowed the cell cycle ­ a fundamental process for cell growth and division. More detailed biochemical experiments showed that cancer cells with excess mannose-6-phosphate could not produce the molecules required to make DNA. This prevented them from doubling their DNA ­ a necessary step for cell division ­ and responding to stress caused by chemotherapy. Harada et al. also noticed that cancer cells lacking MPI did not all react to mannose treatment in exactly the same way. Therefore, future work will address these diverse reactions, potentially providing an opportunity to use the mannose pathway to search for new cancer treatments.


Assuntos
Manose , Neoplasias , Humanos , Cisplatino , Instabilidade Genômica , Nucleotídeos , Replicação do DNA
2.
J Inherit Metab Dis ; 46(2): 300-312, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651831

RESUMO

ATP6AP1-CDG is an X-linked disorder typically characterized by hepatopathy, immunodeficiency, and an abnormal type II transferrin glycosylation pattern. Here, we present 11 new patients and clinical updates with biochemical characterization on one previously reported patient. We also document intrafamilial phenotypic variability and atypical presentations, expanding the symptomatology of ATP6AP1-CDG to include dystonia, hepatocellular carcinoma, and lysosomal abnormalities on hepatic histology. Three of our subjects received successful liver transplantation. We performed N-glycan profiling of total and fractionated plasma proteins for six patients and show associations with varying phenotypes, demonstrating potential diagnostic and prognostic value of fractionated N-glycan profiles. The aberrant N-linked glycosylation in purified transferrin and remaining plasma glycoprotein fractions normalized in one patient post hepatic transplant, while the increases of Man4GlcNAc2 and Man5GlcNAc2 in purified immunoglobulins persisted. Interestingly, in the single patient with isolated immune deficiency phenotype, elevated high-mannose glycans were detected on purified immunoglobulins without glycosylation abnormalities on transferrin or the remaining plasma glycoprotein fractions. Given the diverse and often tissue specific clinical presentations and the need of clinical management post hepatic transplant in ATP6AP1-CDG patients, these results demonstrate that fractionated plasma N-glycan profiling could be a valuable tool in diagnosis and disease monitoring.


Assuntos
Defeitos Congênitos da Glicosilação , ATPases Vacuolares Próton-Translocadoras , Humanos , Defeitos Congênitos da Glicosilação/genética , Glicoproteínas/metabolismo , Transferrina/metabolismo , Fenótipo , Polissacarídeos , Hidrolases/genética , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
3.
Front Cell Dev Biol ; 10: 979096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36393834

RESUMO

Saul-Wilson syndrome is a rare skeletal dysplasia caused by a heterozygous mutation in COG4 (p.G516R). Our previous study showed that this mutation affected glycosylation of proteoglycans and disturbed chondrocyte elongation and intercalation in zebrafish embryos expressing the COG4p.G516R variant. How this mutation causes chondrocyte deficiencies remain unsolved. To analyze a disease-relevant cell type, COG4p.G516R variant was generated by CRISPR knock-in technique in the chondrosarcoma cell line SW1353 to study chondrocyte differentiation and protein secretion. COG4p.G516R cells display impaired protein trafficking and altered COG complex size, similar to SWS-derived fibroblasts. Both SW1353 and HEK293T cells carrying COG4p.G516R showed very modest, cell-type dependent changes in N-glycans. Using 3D culture methods, we found that cells carrying the COG4p.G516R variant made smaller spheroids and had increased apoptosis, indicating impaired in vitro chondrogenesis. Adding WT cells or their conditioned medium reduced cell death and increased spheroid sizes of COG4p.G516R mutant cells, suggesting a deficiency in secreted matrix components. Mass spectrometry-based secretome analysis showed selectively impaired protein secretion, including MMP13 and IGFBP7 which are involved in chondrogenesis and osteogenesis. We verified reduced expression of chondrogenic differentiation markers, MMP13 and COL10A1 and delayed response to BMP2 in COG4p.G516R mutant cells. Collectively, our results show that the Saul-Wilson syndrome COG4p.G516R variant selectively affects the secretion of multiple proteins, especially in chondrocyte-like cells which could further cause pleiotropic defects including hampering long bone growth in SWS individuals.

4.
Front Cell Dev Biol ; 9: 720688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595172

RESUMO

Saul-Wilson syndrome (SWS) is a rare, skeletal dysplasia with progeroid appearance and primordial dwarfism. It is caused by a heterozygous, dominant variant (p.G516R) in COG4, a subunit of the conserved oligomeric Golgi (COG) complex involved in intracellular vesicular transport. Our previous work has shown the intracellular disturbances caused by this mutation; however, the pathological mechanism of SWS needs further investigation. We sought to understand the molecular mechanism of specific aspects of the SWS phenotype by analyzing SWS-derived fibroblasts and zebrafish embryos expressing this dominant variant. SWS fibroblasts accumulate glypicans, a group of heparan sulfate proteoglycans (HSPGs) critical for growth and bone development through multiple signaling pathways. Consistently, we find that glypicans are increased in zebrafish embryos expressing the COG4 p.G516R variant. These animals show phenotypes consistent with convergent extension (CE) defects during gastrulation, shortened body length, and malformed jaw cartilage chondrocyte intercalation at larval stages. Since non-canonical Wnt signaling was shown in zebrafish to be related to the regulation of these processes by glypican 4, we assessed wnt levels and found a selective increase of wnt4 transcripts in the presence of COG4 p.G516R . Moreover, overexpression of wnt4 mRNA phenocopies these developmental defects. LGK974, an inhibitor of Wnt signaling, corrects the shortened body length at low concentrations but amplifies it at slightly higher concentrations. WNT4 and the non-canonical Wnt signaling component phospho-JNK are also elevated in cultured SWS-derived fibroblasts. Similar results from SWS cell lines and zebrafish point to altered non-canonical Wnt signaling as one possible mechanism underlying SWS pathology.

5.
Am J Hum Genet ; 108(6): 1040-1052, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33964207

RESUMO

SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.


Assuntos
Antiporters/genética , Defeitos Congênitos da Glicosilação/etiologia , Retículo Endoplasmático/patologia , Hepatopatias/complicações , Proteínas de Transporte de Monossacarídeos/genética , Mutação , Adulto , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Genes Dominantes , Glicosilação , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
6.
J Biol Chem ; 295(48): 16445-16463, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32938718

RESUMO

Nucleotide sugar transporters, encoded by the SLC35 gene family, deliver nucleotide sugars throughout the cell for various glycosyltransferase-catalyzed glycosylation reactions. GlcNAc, in the form of UDP-GlcNAc, and galactose, as UDP-Gal, are delivered into the Golgi apparatus by SLC35A3 and SLC35A2 transporters, respectively. However, although the UDP-Gal transporting activity of SLC35A2 has been clearly demonstrated, UDP-GlcNAc delivery by SLC35A3 is not fully understood. Therefore, we analyzed a panel of CHO, HEK293T, and HepG2 cell lines including WT cells, SLC35A2 knockouts, SLC35A3 knockouts, and double-knockout cells. Cells lacking SLC35A2 displayed significant changes in N- and O-glycan synthesis. However, in SLC35A3-knockout CHO cells, only limited changes were observed; GlcNAc was still incorporated into N-glycans, but complex type N-glycan branching was impaired, although UDP-GlcNAc transport into Golgi vesicles was not decreased. In SLC35A3-knockout HEK293T cells, UDP-GlcNAc transport was significantly decreased but not completely abolished. However, N-glycan branching was not impaired in these cells. In CHO and HEK293T cells, the effect of SLC35A3 deficiency on N-glycan branching was potentiated in the absence of SLC35A2. Moreover, in SLC35A3-knockout HEK293T and HepG2 cells, GlcNAc was still incorporated into O-glycans. However, in the case of HepG2 cells, no qualitative changes in N-glycans between WT and SLC35A3 knockout cells nor between SLC35A2 knockout and double-knockout cells were observed. These findings suggest that SLC35A3 may not be the primary UDP-GlcNAc transporter and/or different mechanisms of UDP-GlcNAc transport into the Golgi apparatus may exist.


Assuntos
Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Polissacarídeos/biossíntese , Animais , Células CHO , Cricetulus , Técnicas de Silenciamento de Genes , Glicosiltransferases/genética , Complexo de Golgi/genética , Células HEK293 , Células Hep G2 , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Polissacarídeos/genética
7.
Cancer Discov ; 10(6): 822-835, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32200349

RESUMO

Cancer cells reprogram their metabolism to meet elevated energy demands and favor glycolysis for energy production. This boost in glycolytic flux supports proliferation, but also generates acid in the form of hydrogen ions that must be eliminated from the cytoplasm to maintain the alkaline intracellular pH (pHi) associated with transformation. To cope with acid production, tumor cells employ ion transport systems, including the family of sodium-hydrogen exchangers (NHE). Here, we identify NHE7 as a novel regulator of pHi in pancreatic ductal adenocarcinoma (PDAC). We determine that NHE7 suppression causes alkalinization of the Golgi, leading to a buildup of cytosolic acid that diminishes tumor cell fitness mainly through the dysregulation of actin. Importantly, NHE7 knockdown in vivo leads to the abrogation of tumor growth. These results identify Golgi acidification as a mechanism to control pHi and point to the regulation of pHi as a possible therapeutic vulnerability in PDAC. SIGNIFICANCE: NHE7 regulates cytosolic pH through Golgi acidification, which points to the Golgi as a "proton sink" for metabolic acid. Disruption of cytosolic pH homeostasis via NHE7 suppression compromises PDAC cell viability and tumor growth.See related commentary by Ward and DeNicola, p. 768.This article is highlighted in the In This Issue feature, p. 747.


Assuntos
Carcinoma Ductal Pancreático/patologia , Complexo de Golgi/metabolismo , Neoplasias Pancreáticas/patologia , Trocadores de Sódio-Hidrogênio/metabolismo , Homeostase , Humanos , Concentração de Íons de Hidrogênio
8.
Genet Med ; 22(5): 857-866, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31949312

RESUMO

PURPOSE: Four patients with Saul-Wilson syndrome were reported between 1982 and 1994, but no additional individuals were described until 2018, when the molecular etiology of the disease was elucidated. Hence, the clinical phenotype of the disease remains poorly defined. We address this shortcoming by providing a detailed characterization of its phenotype. METHODS: Retrospective chart reviews were performed and primary radiographs assessed for all 14 individuals. Four individuals underwent detailed ophthalmologic examination by the same physician. Two individuals underwent gynecologic evaluation. Z-scores for height, weight, head circumference and body mass index were calculated at different ages. RESULTS: All patients exhibited short stature, with sharp decline from the mean within the first months of life, and a final height Z-score between -4 and -8.5 standard deviations. The facial and radiographic features evolved over time. Intermittent neutropenia was frequently observed. Novel findings included elevation of liver transaminases, skeletal fragility, rod-cone dystrophy, and cystic macular changes. CONCLUSIONS: Saul-Wilson syndrome presents a remarkably uniform phenotype, and the comprehensive description of our cohort allows for improved understanding of the long-term morbidity of the condition, establishment of follow-up recommendations for affected individuals, and documentation of the natural history into adulthood for comparison with treated patients, when therapeutics become available.


Assuntos
Nanismo , Adulto , Feminino , Humanos , Fenótipo , Estudos Retrospectivos
9.
J Clin Invest ; 130(1): 80-82, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31815737

RESUMO

XMEN (X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia) is a complex primary immunological deficiency caused by mutations in MAGT1, a putative magnesium transporter. In this issue of the JCI, Ravell et al. greatly expand the clinical picture. The authors investigated patients' mutations and symptoms and reported distinguishing immunophenotypes. They also showed that MAGT1 is required for N-glycosylation of key T cell and NK cell receptors that can account for some of the clinical features. Notably, transfection of the affected lymphocytes with MAGT1 mRNA restored both N-glycosylation and receptor function. Now we can add XMEN to the ever-growing family of congenital disorders of glycosylation (CDG).


Assuntos
Proteínas de Transporte de Cátions , Infecções por Vírus Epstein-Barr , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Glicosilação , Humanos , Magnésio
10.
J Inherit Metab Dis ; 42(5): 993-997, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30945312

RESUMO

The translocon-associated protein (TRAP) complex facilitates the translocation of proteins across the endoplasmic reticulum membrane and associates with the oligosaccharyl transferase (OST) complex to maintain proper glycosylation of nascent polypeptides. Pathogenic variants in either complex cause a group of rare genetic disorders termed, congenital disorders of glycosylation (CDG). We report an individual who presented with severe intellectual and developmental disabilities and sensorineural deafness with an unsolved type I CDG, and sought to identify the underlying genetic basis. Exome sequencing identified a novel homozygous variant c.278_281delAGGA [p.Glu93Valfs*7] in the signal sequence receptor 3 (SSR3) subunit of the TRAP complex. Biochemical studies in patient fibroblasts showed the variant destabilized the TRAP complex with a complete loss of SSR3 protein and partial loss of SSR1 and SSR4. Importantly, all subunit levels were corrected by expression of wild-type SSR3. Abnormal glycosylation status in fibroblasts was confirmed using two markers proteins, GP130 and ICAM1. Our findings confirm mutations in SSR3 cause a novel CDG. A novel frameshift variant in the translocon associated protein, SSR3, disrupts the stability of the TRAP complex and causes a novel Congenital Disorder of Glycosylation.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Defeitos Congênitos da Glicosilação/genética , Deficiências do Desenvolvimento/etiologia , Glicoproteínas de Membrana/genética , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Pré-Escolar , Defeitos Congênitos da Glicosilação/patologia , Exoma , Glicosilação , Homozigoto , Humanos , Masculino
11.
Nat Commun ; 9(1): 3765, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217974

RESUMO

In mammalian cells, one-third of all polypeptides are transported into or across the ER membrane via the Sec61 channel. While the Sec61 complex facilitates translocation of all polypeptides with amino-terminal signal peptides (SP) or transmembrane helices, the Sec61-auxiliary translocon-associated protein (TRAP) complex supports translocation of only a subset of precursors. To characterize determinants of TRAP substrate specificity, we here systematically identify TRAP-dependent precursors by analyzing cellular protein abundance changes upon TRAP depletion using quantitative label-free proteomics. The results are validated in independent experiments by western blotting, quantitative RT-PCR, and complementation analysis. The SPs of TRAP clients exhibit above-average glycine-plus-proline content and below-average hydrophobicity as distinguishing features. Thus, TRAP may act as SP receptor on the ER membrane's cytosolic face, recognizing precursor polypeptides with SPs of high glycine-plus-proline content and/or low hydrophobicity, and triggering substrate-specific opening of the Sec61 channel through interactions with the ER-lumenal hinge of Sec61α.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/metabolismo , Sinais Direcionadores de Proteínas , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Canais de Translocação SEC/metabolismo , Western Blotting , Glicina , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Prolina , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Especificidade por Substrato
12.
Glycobiology ; 28(5): 276-283, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452367

RESUMO

Protein O-fucosyltransferase-1 (POFUT1) adds O-fucose monosaccharides to epidermal growth factor-like (EGF) repeats found on approximately 100 mammalian proteins, including Notch receptors. Haploinsufficiency of POFUT1 has been linked to adult-onset Dowling Degos Disease (DDD) with hyperpigmentation defects. Homozygous deletion of mouse Pofut1 results in embryonic lethality with severe Notch-like phenotypes including defects in somitogenesis, cardiogenesis, vasculogenesis and neurogenesis, but the extent to which POFUT1 is required for normal human development is not yet understood. Here we report a patient with a congenital syndrome consisting of severe global developmental delay, microcephaly, heart defects, failure to thrive and liver disease with a previously unreported homozygous NM_015352.1: c.485C>T variant (p.Ser162Leu) in POFUT1 detected by exome sequencing. Both parents are heterozygotes and neither manifests any signs of DDD. No other detected variant explained the phenotype. This variant eliminated a conserved N-glycosylation sequon at Asn160 in POFUT1 and profoundly decreased POFUT1 activity in patient fibroblasts compared to control fibroblasts. Purified p.Ser162Leu mutant protein also showed much lower POFUT1 activity with a lower affinity for EGF acceptor substrate than wild type POFUT1. Eliminating the N-glycan sequon by replacing Asn160 with Gln had little effect on POFUT1 activity, suggesting that loss of the glycan is not responsible for the defect. Furthermore, the p.Ser162Leu mutant showed weaker ability to rescue Notch activity in cell-based assays. These results suggest that this N-glycan of POFUT1 is not required for its proper enzymatic function, and that the p.Ser162Leu mutation of POFUT1 likely causes global developmental delay, microcephaly with vascular and cardiac defects.


Assuntos
Doenças Cardiovasculares/genética , Deficiências do Desenvolvimento/genética , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Variação Genética/genética , Microcefalia/genética , Células Cultivadas , Células HEK293 , Humanos , Mutação
13.
Elife ; 62017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28644127

RESUMO

Rapid cellular proliferation in early development and cancer depends on glucose metabolism to fuel macromolecule biosynthesis. Metabolic enzymes are presumed regulators of this glycolysis-driven metabolic program, known as the Warburg effect; however, few have been identified. We uncover a previously unappreciated role for Mannose phosphate isomerase (MPI) as a metabolic enzyme required to maintain Warburg metabolism in zebrafish embryos and in both primary and malignant mammalian cells. The functional consequences of MPI loss are striking: glycolysis is blocked and cells die. These phenotypes are caused by induction of p53 and accumulation of the glycolytic intermediate fructose 6-phosphate, leading to engagement of the hexosamine biosynthetic pathway (HBP), increased O-GlcNAcylation, and p53 stabilization. Inhibiting the HBP through genetic and chemical methods reverses p53 stabilization and rescues the Mpi-deficient phenotype. This work provides mechanistic evidence by which MPI loss induces p53, and identifies MPI as a novel regulator of p53 and Warburg metabolism.


Assuntos
Acetilglucosamina/metabolismo , Manose-6-Fosfato Isomerase/metabolismo , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular Tumoral , Frutosefosfatos/metabolismo , Glicólise , Humanos , Peixe-Zebra/embriologia
14.
Am J Med Genet A ; 170(12): 3165-3171, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27480077

RESUMO

Increasing numbers of congenital disorders of glycosylation (CDG) have been reported recently resulting in an expansion of the phenotypes associated with this group of disorders. SRD5A3 codes for polyprenol reductase which converts polyprenol to dolichol. This is a major pathway for dolichol biosynthesis for N-glycosylation, O-mannosylation, C-mannosylation, and GPI anchor synthesis. We present the features of five individuals (three children and two adults) with mutations in SRD5A3 focusing on the variable eye and skin involvement. We compare that to 13 affected individuals from the literature including five adults allowing us to delineate the features that may develop over time with this disorder including kyphosis, retinitis pigmentosa, and cataracts. © 2016 Wiley Periodicals, Inc.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Defeitos Congênitos da Glicosilação/genética , Olho/fisiopatologia , Proteínas de Membrana/genética , Pele/fisiopatologia , Adulto , Criança , Defeitos Congênitos da Glicosilação/fisiopatologia , Dolicóis/metabolismo , Feminino , Glicosilação , Homozigoto , Humanos , Masculino , Mutação , Fenótipo , Tretinoína/análogos & derivados , Tretinoína/metabolismo
15.
Pediatr Int ; 58(8): 785-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27325525

RESUMO

Congenital nephrotic syndrome (NS) in the newborn is most frequently related to mutations in genes specific for structural integrity of the glomerular basement membrane and associated filtration structures within the kidney, resulting in massive leakage of plasma proteins into the urine. Occurrence of congenital NS in a multi-system syndrome is less common. We describe the case of an infant with deteriorating neurological status, seizures, edema, and proteinuria who was found to have a mutation in gene ALG1 and a renal biopsy consistent with congenital NS. Furthermore, we briefly review rare existing case reports documenting congenital NS in patients with mutations in ALG1, and treatment strategies, including novel use of peritoneal dialysis.


Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação/genética , DNA/genética , Manosiltransferases/genética , Mutação , Síndrome Nefrótica/genética , Defeitos Congênitos da Glicosilação/metabolismo , Análise Mutacional de DNA , Glicosilação , Humanos , Recém-Nascido , Masculino , Manosiltransferases/metabolismo , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/terapia , Diálise Peritoneal
16.
Sci Signal ; 8(406): ra124, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26645581

RESUMO

Melanoma is one of the most lethal skin cancers worldwide, primarily because of its propensity to metastasize. Thus, the elucidation of mechanisms that govern metastatic propensity is urgently needed. We found that protein kinase Cε (PKCε)-mediated activation of activating transcription factor 2 (ATF2) controls the migratory and invasive behaviors of melanoma cells. PKCε-dependent phosphorylation of ATF2 promoted its transcriptional repression of the gene encoding fucokinase (FUK), which mediates the fucose salvage pathway and thus global cellular protein fucosylation. In primary melanocytes and cell lines representing early-stage melanoma, the abundance of PKCε-phosphorylated ATF2 was low, thereby enabling the expression of FUK and cellular protein fucosylation, which promoted cellular adhesion and reduced motility. In contrast, increased expression of the gene encoding PKCε and abundance of phosphorylated, transcriptionally active ATF2 were observed in advanced-stage melanomas and correlated with decreased FUK expression, decreased cellular protein fucosylation, attenuated cell adhesion, and increased cell motility. Restoring fucosylation in mice either by dietary fucose supplementation or by genetic manipulation of murine Fuk expression attenuated primary melanoma growth, increased the number of intratumoral natural killer cells, and decreased distal metastasis in murine isograft models. Tumor microarray analysis of human melanoma specimens confirmed reduced fucosylation in metastatic tumors and a better prognosis for primary melanomas that had high abundance of fucosylation. Thus, inhibiting PKCε or ATF2 or increasing protein fucosylation in tumor cells may improve clinical outcome in melanoma patients.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Fucose/metabolismo , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fator 2 Ativador da Transcrição/genética , Animais , Linhagem Celular Tumoral , Fucose/genética , Glicosilação , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/genética , Melanoma/patologia , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética
17.
N Engl J Med ; 370(6): 533-42, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24499211

RESUMO

BACKGROUND: Congenital disorders of glycosylation are genetic syndromes that result in impaired glycoprotein production. We evaluated patients who had a novel recessive disorder of glycosylation, with a range of clinical manifestations that included hepatopathy, bifid uvula, malignant hyperthermia, hypogonadotropic hypogonadism, growth retardation, hypoglycemia, myopathy, dilated cardiomyopathy, and cardiac arrest. METHODS: Homozygosity mapping followed by whole-exome sequencing was used to identify a mutation in the gene for phosphoglucomutase 1 (PGM1) in two siblings. Sequencing identified additional mutations in 15 other families. Phosphoglucomutase 1 enzyme activity was assayed on cell extracts. Analyses of glycosylation efficiency and quantitative studies of sugar metabolites were performed. Galactose supplementation in fibroblast cultures and dietary supplementation in the patients were studied to determine the effect on glycosylation. RESULTS: Phosphoglucomutase 1 enzyme activity was markedly diminished in all patients. Mass spectrometry of transferrin showed a loss of complete N-glycans and the presence of truncated glycans lacking galactose. Fibroblasts supplemented with galactose showed restoration of protein glycosylation and no evidence of glycogen accumulation. Dietary supplementation with galactose in six patients resulted in changes suggestive of clinical improvement. A new screening test showed good discrimination between patients and controls. CONCLUSIONS: Phosphoglucomutase 1 deficiency, previously identified as a glycogenosis, is also a congenital disorder of glycosylation. Supplementation with galactose leads to biochemical improvement in indexes of glycosylation in cells and patients, and supplementation with complex carbohydrates stabilizes blood glucose. A new screening test has been developed but has not yet been validated. (Funded by the Netherlands Organization for Scientific Research and others.).


Assuntos
Glucofosfatos/genética , Doença de Depósito de Glicogênio/genética , Fenótipo , Fosfoglucomutase/genética , Galactose/uso terapêutico , Genes Recessivos , Glucose/metabolismo , Glucofosfatos/metabolismo , Doença de Depósito de Glicogênio/dietoterapia , Doença de Depósito de Glicogênio/metabolismo , Glicoproteínas/biossíntese , Glicosilação , Humanos , Masculino , Mutação , Fosfoglucomutase/metabolismo , RNA Mensageiro/análise
18.
Proc Natl Acad Sci U S A ; 110(48): 19366-71, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218558

RESUMO

The glycolipid Glc3Man9GlcNAc2-pyrophosphate-dolichol serves as the precursor for asparagine (N)-linked protein glycosylation in mammals. The biosynthesis of dolichol-linked oligosaccharides (DLOs) is arrested in low-glucose environments via unknown mechanisms, resulting in abnormal N-glycosylation. Here, we show that under glucose deprivation, DLOs are prematurely degraded during the early stages of DLO biosynthesis by pyrophosphatase, leading to the release of singly phosphorylated oligosaccharides into the cytosol. We identified that the level of GDP-mannose (Man), which serves as a donor substrate for DLO biosynthesis, is substantially reduced under glucose deprivation. We provide evidence that the selective shutdown of the GDP-Man biosynthetic pathway is sufficient to induce the release of phosphorylated oligosaccharides. These results indicate that glucose-regulated metabolic changes in the GDP-Man biosynthetic pathway cause the biosynthetic arrest of DLOs and facilitate their premature degradation by pyrophosphatase. We propose that this degradation system may avoid abnormal N-glycosylation with premature oligosaccharides under conditions that impair efficient DLO biosynthesis.


Assuntos
Asparagina/metabolismo , Vias Biossintéticas/fisiologia , Dolicóis/metabolismo , Retículo Endoplasmático/metabolismo , Guanosina Difosfato Manose/biossíntese , Oligossacarídeos/biossíntese , Peptídeos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Citosol/metabolismo , Fibroblastos , Glucose/deficiência , Glicosilação , Camundongos , Modelos Biológicos , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Pirofosfatases/metabolismo , Espectrometria de Massas em Tandem
19.
Mol Genet Metab ; 110(3): 345-351, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23856421

RESUMO

Congenital disorders of glycosylation (CDG) are rare genetic defects mainly in the post-translational modification of proteins via attachment of carbohydrate chains. We describe an infant with the phenotype of a congenital muscular dystrophy, with borderline microcephaly, hypotonia, camptodactyly, severe motor delay, and elevated creatine kinase. Muscle biopsy showed muscular dystrophy and reduced α-dystroglycan immunostaining with glycoepitope-specific antibodies in a pattern diagnostic of dystroglycanopathy. Carbohydrate deficient transferrin testing showed a pattern pointing to a CDG type I. Sanger sequencing of DPM1 (dolichol-P-mannose synthase subunit 1) revealed a novel Gly > Val change c.455G > T missense mutation resulting in p.Gly152Val) of unknown pathogenicity and deletion/duplication analysis revealed an intragenic deletion from exons 3 to 7 on the other allele. DPM1 activity in fibroblasts was reduced by 80%, while affinity for the substrate was not depressed, suggesting a decrease in the amount of active enzyme. Transfected cells expressing tagged versions of wild type and the p.Gly152Val mutant displayed reduced binding to DPM3, an essential, non-catalytic subunit of the DPM complex, suggesting a mechanism for pathogenicity. The present case is the first individual described with DPM1-CDG (CDG-Ie) to also have clinical and muscle biopsy findings consistent with dystroglycanopathy.


Assuntos
Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Manosiltransferases/genética , Distrofias Musculares/diagnóstico , Mutação , Biópsia , Diagnóstico Diferencial , Progressão da Doença , Ativação Enzimática , Éxons , Feminino , Ordem dos Genes , Humanos , Lactente , Masculino , Manosiltransferases/metabolismo , Músculo Esquelético/patologia
20.
Traffic ; 14(10): 1065-77, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23865579

RESUMO

Multiple mutations in different subunits of the tethering complex Conserved Oligomeric Golgi (COG) have been identified as a cause for Congenital Disorders of Glycosylation (CDG) in humans. Yet, the mechanisms by which COG mutations induce the pleiotropic CDG defects have not been fully defined. By detailed analysis of Cog8 deficiency in either HeLa cells or CDG-derived fibroblasts, we show that Cog8 is required for the assembly of both the COG complex and the Golgi Stx5-GS28-Ykt6-GS15 and Stx6-Stx16-Vti1a-VAMP4 SNARE complexes. The assembly of these SNARE complexes is also impaired in cells derived from a Cog7-deficient CDG patient. Likewise, the integrity of the COG complex is also impaired in Cog1-, Cog4- and Cog6-depleted cells. Significantly, deficiency of Cog1, Cog4, Cog6 or Cog8 distinctly influences the production of COG subcomplexes and their Golgi targeting. These results shed light on the structural organization of the COG complex and its subcellular localization, and suggest that its integrity is required for both tethering of transport vesicles to the Golgi apparatus and the assembly of Golgi SNARE complexes. We propose that these two key functions are generally and mechanistically impaired in COG-associated CDG patients, thereby exerting severe pleiotropic defects.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Complexo de Golgi/metabolismo , Proteínas SNARE/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Defeitos Congênitos da Glicosilação/genética , Cricetulus , Fibroblastos/metabolismo , Glicosilação , Complexo de Golgi/genética , Células HEK293 , Células HeLa , Humanos , Mutação , Subunidades Proteicas , Transporte Proteico , Proteínas SNARE/genética , Vesículas Transportadoras/genética , Vesículas Transportadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA