Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(24): 15815-15830, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833572

RESUMO

Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-ß-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.


Assuntos
Plaquetas , Nanofibras , Humanos , Plaquetas/metabolismo , Plaquetas/química , Nanofibras/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Agregação Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Amiloide/química , Amiloide/metabolismo , Membranas Artificiais
2.
Int J Biol Macromol ; 253(Pt 8): 127540, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37863128

RESUMO

Although pentraxin-3 holds promise as a diagnosis/prognosis biomarker of microbial infections and lung cancer, its analysis in human serum can be constrained by matrix effects caused by high abundance proteins - human serum albumin and immunoglobulin G. Aqueous biphasic systems composed of polymers and citrate buffer are here proposed as a serum pretreatment step to improve the accuracy of pentraxin-3 analysis. Binodal curves were determined to identify the compositions required to form two phases and to correlate the polymers' properties and performance in serum pretreatment and biomarker extraction. Aqueous biphasic systems were evaluated regarding their ability to deplete human serum albumin and immunoglobulin G at the interphase. Polymers of relatively high to intermediate hydrophobicity were unveiled as efficient components to deplete high abundance serum proteins. Considering the possibility to extract pentraxin-3 from human serum into the polymer-rich phase, the system composed of polyethylene glycol with a molecular weight of 1000 g·mol-1 simultaneously achieved >93 % of human serum albumin and immunoglobulin G depletion and complete biomarker extraction. The accuracy of analysis of pretreated human serum by enzyme-linked immunosorbent assays outperformed that of a non-pretreated sample, with a relative error of 0.8 % compared to 14.6 %, contributing to boost pentraxin-3 usefulness as a biomarker.


Assuntos
Polietilenoglicóis , Polímeros , Humanos , Água , Albumina Sérica Humana , Imunoglobulina G , Biomarcadores
3.
Biosensors (Basel) ; 13(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36979546

RESUMO

Prostate cancer (PCa) is one of the cancer types that most affects males worldwide and is among the highest contributors to cancer mortality rates. Therefore, there is an urgent need to find strategies to improve the diagnosis of PCa. Microtechnologies have been gaining ground in biomedical devices, with microfluidics and lab-on-chip systems potentially revolutionizing medical diagnostics. In this paper, it is shown that prostate-specific antigen (PSA) can be detected through an immunoassay performed in a microbead-based microfluidic device after being extracted and purified from a serum sample through an aqueous biphasic system (ABS). Given their well-established status as ABS components for successful bioseparations, ionic liquids (ILs) and polymers were used in combination with buffered salts. Using both IL-based and polymer-based ABS, it was demonstrated that it is possible to detect PSA in non-physiological environments. It was concluded that the ABS that performed better in extracting the PSA from serum were those composed of tetrabutylammonium chloride ([N4444]Cl) and tetrabutylphosphonium bromide ([P4444]Br), both combined with phosphate buffer, and constituted by polyethylene glycol with a molecular weight of 1000 g/mol (PEG1000) with citrate buffer. In comparison with the assay with PSA prepared in phosphate-buffered saline (PBS) or human serum in which no ABS-mediated extraction was applied, assays attained lower limits of detection after IL-based ABS-mediated extraction. These results reinforce the potential of this method in future point-of-care (PoC) measurements.


Assuntos
Líquidos Iônicos , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico , Água , Neoplasias da Próstata/diagnóstico , Polímeros , Fosfatos
4.
J Hazard Mater ; 448: 130883, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731320

RESUMO

The consumption of cytostatics, pharmaceuticals prescribed in chemotherapy, is increasing every year and worldwide, along with the incidence of cancer. The presence and the temporal evolution of cytostatics in wastewaters from a Portuguese hospital center was evaluated through a 9-month sampling campaign, comprising a total of one hundred and twenty-nine samples, collected from May 2019 to February 2020. Eleven cytostatics out of thirteen pharmaceuticals were studied, including flutamide, mycophenolate mofetil and mycophenolic acid, which have never been monitored before. Target analytes were extracted and quantified by solid-phase extraction coupled to liquid-chromatography-tandem mass spectrometry analysis; the method was fully validated. All pharmaceuticals were detected in at least one sample, bicalutamide being the one found with higher frequency (detected in all samples), followed by mycophenolic acid, which was also the compound detected at higher concentrations (up to 5340 ± 211 ng/L). Etoposide, classified as carcinogenic to humans, was detected in 60% of the samples at concentrations up to 142 ± 15 ng/L. The risk from exposure to cytostatics was estimated for aquatic organisms living in receiving bodies. Cyclophosphamide, doxorubicin, etoposide, flutamide, megestrol and mycophenolic acid are suspected to induce risk. Long-term and synergic effects should not be neglected, even for the cytostatics for which no risk was estimated.


Assuntos
Citostáticos , Poluentes Químicos da Água , Humanos , Citostáticos/análise , Flutamida , Etoposídeo/análise , Ácido Micofenólico , Poluentes Químicos da Água/química , Extração em Fase Sólida/métodos , Monitoramento Ambiental/métodos , Preparações Farmacêuticas
5.
Front Bioeng Biotechnol ; 10: 1037322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518198

RESUMO

Polydopamine (PDA), a bioinspired polymer from mussel adhesive proteins, has attracted impressive attention as a novel coating for (nano) materials with an adequate conformal layer and adjustable thickness. Currently, PDA is obtained from dopamine chemical oxidation under alkaline conditions, limiting its use in materials sensible to alkaline environments. Envisaging a widespread use of PDA, the polymerization of dopamine by enzymatic catalysis allows the dopamine polymerization in a large range of pHs, overcoming thus the limitations of conventional chemical oxidation. Moreover, the conventional method of polymerization is a time-consuming process and produces PDA films with poor stability, which restricts its applications. On the other hand, the main bottleneck of enzyme-based biocatalytic processes is the high cost of the single use of the enzyme. In this work, laccase was used to catalyse dopamine polymerization. To improve its performance, a liquid support for integrating the laccase and its reuse together with the PDA production and recovery was developed using aqueous biphasic systems (ABS). Firstly, dopamine polymerization by laccase was optimized in terms of pH, temperature and initial dopamine concentration. It was demonstrated that the highest enzymatic polymerization of dopamine was achieved at pH 5.5, 30°C and 2 mg ml-1 of dopamine. Then, ABS composed of polymers, salts and ionic liquids were evaluated to optimize the laccase confinement in one phase while PDA is recovered in the opposite phase. The most promising ABS allowing the separation of laccase from the reaction product is composed of polypropylene glycol (400 g mol-1) and K2HPO4. The polymerization of dopamine in ABS leads to a remarkable improvement of polymerization of 3.9-fold in comparison to the conventional chemical PDA polymerization. The phase containing the confined laccase was reused for four consecutive reaction cycles, with a relative polymerization of 68.9% in the last cycle. The results of this work proved that ABS are a promising approach to create a liquid support for enzyme reuse allowing the process intensification efforts. The use of biocatalysts in ABS emerges as sustainable and alternative platforms from environmental and techno-economic points of view.

6.
Appl Microbiol Biotechnol ; 105(11): 4515-4534, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34059941

RESUMO

In the past decades, the production of biopharmaceuticals has gained high interest due to its great sensitivity, specificity, and lower risk of negative effects to patients. Biopharmaceuticals are mostly therapeutic recombinant proteins produced through biotechnological processes. In this context, L-asparaginase (L-asparagine amidohydrolase, L-ASNase (E.C. 3.5.1.1)) is a therapeutic enzyme that has been abundantly studied by researchers due to its antineoplastic properties. As a biopharmaceutical, L-ASNase has been used in the treatment of acute lymphoblastic leukemia (ALL), acute myeloblastic leukemia (AML), and other lymphoid malignancies, in combination with other drugs. Besides its application as a biopharmaceutical, this enzyme is widely used in food processing industries as an acrylamide mitigation agent and as a biosensor for the detection of L-asparagine in physiological fluids at nano-levels. The great demand for L-ASNase is supplied by recombinant enzymes from Escherichia coli and Erwinia chrysanthemi. However, production processes are associated to low yields and proteins associated to immunogenicity problems, which leads to the search for a better enzyme source. Considering the L-ASNase pharmacological and food importance, this review provides an overview of the current biotechnological developments in L-ASNase production and biochemical characterization aiming to improve the knowledge about its production. KEY POINTS: • Microbial enzyme applications as biopharmaceutical and in food industry • Biosynthesis process: from the microorganism to bioreactor technology • Enzyme activity and kinetic properties: crucial for the final application.


Assuntos
Antineoplásicos/metabolismo , Asparaginase/biossíntese , Asparagina , Biotecnologia , Dickeya chrysanthemi , Escherichia coli , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Proteínas Recombinantes/biossíntese
7.
Vaccines (Basel) ; 9(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915863

RESUMO

The advent of biopharmaceuticals in modern medicine brought enormous benefits to the treatment of numerous human diseases and improved the well-being of many people worldwide. First introduced in the market in the early 1980s, the number of approved biopharmaceutical products has been steadily increasing, with therapeutic proteins, antibodies, and their derivatives accounting for most of the generated revenues. The success of pharmaceutical biotechnology is closely linked with remarkable developments in DNA recombinant technology, which has enabled the production of proteins with high specificity. Among promising biopharmaceuticals are interferons, first described by Isaacs and Lindenmann in 1957 and approved for clinical use in humans nearly thirty years later. Interferons are secreted autocrine and paracrine proteins, which by regulating several biochemical pathways have a spectrum of clinical effectiveness against viral infections, malignant diseases, and multiple sclerosis. Given their relevance and sustained market share, this review provides an overview on the evolution of interferon manufacture, comprising their production, purification, and formulation stages. Remarkable developments achieved in the last decades are herein discussed in three main sections: (i) an upstream stage, including genetically engineered genes, vectors, and hosts, and optimization of culture conditions (culture media, induction temperature, type and concentration of inducer, induction regimens, and scale); (ii) a downstream stage, focusing on single- and multiple-step chromatography, and emerging alternatives (e.g., aqueous two-phase systems); and (iii) formulation and delivery, providing an overview of improved bioactivities and extended half-lives and targeted delivery to the site of action. This review ends with an outlook and foreseeable prospects for underdeveloped aspects of biopharma research involving human interferons.

8.
Adv Healthc Mater ; 10(10): e2100266, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33764007

RESUMO

The therapeutic effectiveness and biological relevance of technologies based on adherent cells depend on platforms that enable long-term culture in controlled environments. Liquid-core capsules have been suggested as semipermeable moieties with spatial homogeneity due to the high mobility of all components in their core. The lack of cell-adhesive sites in liquid-core structures often hampers their use as platforms for stem cell-based technologies for long-term survival and cell-directed self-organization. Here, the one-step fast formation of robust polymeric capsules formed by interfacial complexation of oppositely charged polyelectrolytes in an all-aqueous environment, compatible with the simultaneous encapsulation of mesenchymal stem/stromal cells (MSCs) and microcarriers, is described. The adhesion of umbilical cord MSCs to polymeric microcarriers enables their aggregation and culture for more than 21 days in capsules prepared either manually by dropwise addition, or by scalable electrohydrodynamic atomization, generating robust and stable capsules. Cell aggregation and secretion overtime can be tailored by providing cells with static or dynamic (bioreactor) environments.


Assuntos
Células-Tronco Mesenquimais , Cápsulas , Polieletrólitos , Células-Tronco , Cordão Umbilical
9.
Biotechnol Bioeng ; 118(7): 2514-2523, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764496

RESUMO

Novel liquid supports for enzyme immobilization and reuse based on aqueous biphasic systems (ABS) constituted by cholinium-based ionic liquids (ILs) and polymers for the degradation of dyes are here proposed. The biocatalytic reaction for dye decolorization using laccase occured in the biphasic medium, with the enzyme being "supported" in the IL-rich phase and the dye and degradation products being enriched in the polymer-rich phase. An initial screening of the laccase activity in aqueous solutions of ABS constituents, namely cholinium dihydrogen citrate ([Ch][DHC]), cholinium dihydrogen phosphate ([Ch][DHP]), cholinium acetate ([Ch][Acet]), polypropylene glycol 400 (PPG 400), polyethylene glycol 400 (PEG 400) and K2 HPO4 was carried out. Compared to the buffered control, a relative laccase activity of up to 170%, 257%, and 530% was observed with PEG 400, [Ch][DHP], and [Ch][DHC], respectively. These ABS constituents were then investigated for the in situ enzymatic biodegradation of the Remazol Brilliant Blue R (RBBR) dye. At the optimized conditions, the ABS constituted by PPG 400 at 46 wt% and [Ch][DHC] at 16 wt% leads to the complete degradation of the RBBR dye, further maintaining the enzyme activity. This ABS also allows an easy immobilization, recovery, and reuse of the biocatalyst for six consecutive reaction cycles, achieving a degradation yield of the dye of 96% in the last cycle. In summary, if properly designed, high enzymatic activities and reaction yields are obtained with ABS as liquid supports, while simultaneously overcoming the safety and environmental concerns of conventional organic solvents used in liquid-liquid heterogeneous reactions, thus representing more sustainable biocatalytic processes.


Assuntos
Corantes/química , Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Lacase/química , Polyporaceae/enzimologia
10.
Phys Chem Chem Phys ; 23(7): 4133-4140, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33595039

RESUMO

Although aqueous biphasic systems have been largely investigated in the separation and/or purification of biocompounds, their potential as reaction media to design integrated reaction-separation processes has been less explored. In this work aqueous biphasic systems (ABSs) composed of polypropylene glycol of molecular weight 400 g mol-1 (PPG 400) and different polyethylene glycols (PEGs) were characterized, and investigated for integrated reaction-separation processes, i.e. in the nucleophilic degradation of diazinon and further separation of reaction products by taking advantage of the lower-critical solution temperature (LCST) behaviour of these ABSs. The nucleophilic degradation of diazinon was carried out in the monophasic regime at 298 K, after which an increase in temperature (up to 313 K) allowed the product separation by two-phase formation (thermoreversible systems). The reaction kinetics and reaction pathways have been determined. The reaction kinetic increases as the PEG molecular weight decreases, with the half-life values obtained being competitive to those previously reported using volatile organic solvents as solvent media and significantly higher than under alkaline hydrolysis. One reaction pathway occurs in ABSs comprising PEGs of higher molecular weights, whereas in the ABS composed of PEG 600 two reaction pathways have been identified, meaning that the reaction pathways can be tailored by changing the PEG nature. ABSs formed by PEGs of lower molecular weights were identified as the most promising option to separate the pesticide degradation products by simply applying changes in temperature.

11.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321857

RESUMO

l-asparaginase (ASNase, EC 3.5.1.1) is an aminohydrolase enzyme with important uses in the therapeutic/pharmaceutical and food industries. Its main applications are as an anticancer drug, mostly for acute lymphoblastic leukaemia (ALL) treatment, and in acrylamide reduction when starch-rich foods are cooked at temperatures above 100 °C. Its use as a biosensor for asparagine in both industries has also been reported. However, there are certain challenges associated with ASNase applications. Depending on the ASNase source, the major challenges of its pharmaceutical application are the hypersensitivity reactions that it causes in ALL patients and its short half-life and fast plasma clearance in the blood system by native proteases. In addition, ASNase is generally unstable and it is a thermolabile enzyme, which also hinders its application in the food sector. These drawbacks have been overcome by the ASNase confinement in different (nano)materials through distinct techniques, such as physical adsorption, covalent attachment and entrapment. Overall, this review describes the most recent strategies reported for ASNase confinement in numerous (nano)materials, highlighting its improved properties, especially specificity, half-life enhancement and thermal and operational stability improvement, allowing its reuse, increased proteolysis resistance and immunogenicity elimination. The most recent applications of confined ASNase in nanomaterials are reviewed for the first time, simultaneously providing prospects in the described fields of application.


Assuntos
Asparaginase/química , Asparaginase/farmacologia , Biotecnologia , Asparaginase/isolamento & purificação , Técnicas Biossensoriais , Desenvolvimento de Medicamentos , Indústria Alimentícia , Humanos , Nanotecnologia/métodos , Engenharia de Proteínas , Relação Estrutura-Atividade
12.
Sci Rep ; 10(1): 14931, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913223

RESUMO

Prostate specific antigen (PSA) is the most widely used clinical biomarker for the diagnosis and monitoring of prostate cancer. Most available techniques for PSA quantification in human fluids require extensive sample processing and expensive immunoassays that are often unavailable in developing countries. The quantification of PSA in serum is the most common practice; however, PSA is also present in human urine, although less used in diagnosis. Herein we demonstrate the use of ionic-liquid-based aqueous biphasic systems (IL-based ABS) as effective pre-treatment strategies of human urine, allowing the PSA detection and quantification by more expedite equipment in a non-invasive matrix. If properly designed, IL-based ABS afford the simultaneous extraction and concentration of PSA (at least up to 250-fold) in the IL-rich phase. The best ABS not only allow to concentrate PSA but also other forms of PSA, which can be additionally quantified, paving the way to their use in differential prostate cancer diagnosis.


Assuntos
Líquidos Iônicos , Antígeno Prostático Específico/urina , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/urina , Manejo de Espécimes/métodos , Urinálise/métodos , Diagnóstico Diferencial , Humanos , Masculino , Neoplasias da Próstata/classificação
13.
Int J Biol Macromol ; 150: 914-921, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068054

RESUMO

Immunoglobulin G (IgG) has been used in the treatment of cancer, autoimmune diseases and neurological disorders, however, the current technologies to purify and recover IgG from biological media are of high-cost and time-consuming, resulting in high-cost products. In this sense, the search for cost-effective technologies to obtain highly pure and active IgG is highly required. The present work proposes a simple and efficient method for the purification and recovery of IgG from rabbit serum using magnetic iron oxide nanoparticles (magnetite, Fe3O4) coated with hybrid shells of a siliceous material modified with the anionic polysaccharide κ-carrageenan. Experimental parameters such as pH, contact time between the hybrid magnetic nanoparticles (HMNPs) and rabbit serum, and total protein concentration or dilution factor of serum were evaluated. The best results were achieved at pH 5.0, with a contact time of 60 min and using a rabbit serum with a total protein concentration of 4.8 mg·mL-1. Under these conditions, it was obtained an IgG purification factor and adsorption yield onto the HMNPs of 3.0 and 90%, respectively. The desorption of IgG from the HMNPs was evaluated using two strategies: a KCl aqueous solution and buffered aqueous solutions. Comparing to the initial rabbit serum, an IgG purification factor of 2.7 with a recovery yield of 74% were obtained using a buffered aqueous solution at pH 7.0. After desorption, the secondary structure of IgG and other proteins was evaluated by circular dichroism and no changes in the secondary structure were observed, meaning that the IgG integrity is kept after the adsorption and desorption steps. In summary, the application of HMNPs in the purification of IgG from serum samples has a high potential as a new downstream platform.


Assuntos
Carragenina/química , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Nanopartículas de Magnetita/química , Adsorção , Animais , Anticorpos Monoclonais/isolamento & purificação , Concentração de Íons de Hidrogênio , Imunoglobulina G/sangue , Tamanho da Partícula , Coelhos , Água , Difração de Raios X
14.
RSC Adv ; 10(52): 31205-31213, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35520670

RESUMO

The enzyme l-asparaginase (ASNase) presents effective antineoplastic properties used for acute lymphoblastic leukemia treatment besides their potential use in the food sector to decrease the acrylamide formation. Considering their applications, the improvement of this enzyme's properties by efficient immobilization techniques is in high demand. Carbon nanotubes are promising enzyme immobilization supports, since these materials have increased surface area and effective capacity for enzyme loading. Accordingly, in this study, multi-walled carbon nanotubes (MWCNTs) were explored as novel supports for ASNase immobilization by a simple adsorption method. The effect of pH and contact time of immobilization, as well as the ASNase to nanoparticles mass ratio, were optimized according to the enzyme immobilization yield and relative recovered activity. The enzyme-MWCNTs bioconjugation was confirmed by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman and transmission electron microscopy (TEM) studies. MWCNTs have a high ASNase loading capacity, with a maximum immobilization yield of 90%. The adsorbed ASNase retains 90% of the initial enzyme activity at the optimized conditions (pH 8.0, 60 min, and 1.5 × 10-3 g mL-1 of ASNase). According to these results, ASNase immobilized onto MWCNTs can find improved applications in several areas, namely biosensors, medicine and food industry.

15.
Front Chem ; 7: 459, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316969

RESUMO

The food industry produces significant amounts of waste, many of them rich in valuable compounds that could be recovered and reused in the framework of circular economy. The development of sustainable and cost-effective technologies to recover these value added compounds will contribute to a significant decrease of the environmental footprint and economic burden of this industry sector. Accordingly, in this work, aqueous biphasic systems (ABS) composed of cholinium-derived bistriflimide ionic liquids (ILs) and carbohydrates were investigated as an alternative process to simultaneously separate and recover antioxidants and carbohydrates from food waste. Aiming at improving the biocompatible character of the studied ILs and proposed process, cholinium-derived bistriflimide ILs were chosen, which were properly designed by playing with the cation alkyl side chain and the number of functional groups attached to the cation to be able to create ABS with carbohydrates. These ILs were characterized by cytotoxicity assays toward human intestinal epithelial cells (Caco-2 cell line), demonstrating to have a significantly lower toxicity than other well-known and commonly used fluorinated ILs. The capability of these ILs to form ABS with a series of carbohydrates, namely monosaccharides, disaccharides and polyols, was then appraised by the determination of the respective ternary liquid-liquid phase diagrams at 25°C. The studied ABS were finally used to separate carbohydrates and antioxidants from real food waste samples, using an expired vanilla pudding as an example. With the studied systems, the separation of the two products occurs in one-step, where carbohydrates are enriched in the carbohydrate-rich phase and antioxidants are mainly present in the IL-rich phase. Extraction efficiencies of carbohydrates ranging between 89 and 92% to the carbohydrate-rich phase, and antioxidant relative activities ranging between 65 and 75% in the IL-rich phase were obtained. Furthermore, antioxidants from the IL-rich phase were recovered by solid-phase extraction, and the IL was recycled for two more times with no losses on the ABS separation performance. Overall, the obtained results show that the investigated ABS are promising platforms to simultaneously separate carbohydrates and antioxidants from real food waste samples, and could be used in further related applications foreseeing industrial food waste valorization.

16.
Biotechnol Prog ; 34(5): 1205-1212, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30006961

RESUMO

Given the biotechnology advances observed in recent years in terms of upstream, the development of effective downstream processes becomes mandatory to decrease the associated costs of biotechnological-based products. Although a large interest has been devoted to ionic-liquid-based aqueous biphasic systems (IL-based ABS) as tailored separation platforms, imidazolium-based ILs have been the preferred choice as phase-forming agents. To overcome some toxicity and biodegradability issues associated to imidazolium-based ILs, novel ABS composed of ILs analogues of glycine-betaine (AGB-ILs) are here proposed and investigated. Five AGB-ILs were synthesized, characterized in terms of ecotoxicity, and applied toward the development of novel ABS formed with Na2 SO4 . Three commercial ILs were also investigated for comparison purposes. The respective ABS ternary phase diagrams, as well as the tie-lines and tie-line lengths, were determined at 25°C. Finally, their performance as extraction strategies was evaluated with five amino acids (L-tryptophan, L-phenylalanine, D-phenylalanine, L-tyrosine and L-3,4-dihydroxyphenylalanine/L-dopa). In all studied systems amino acids preferentially migrate to the IL-rich phase, and with AGB-ILs, the amino acid extraction efficiencies to the IL-rich phase range between 65% and 100%, obtained in a single-step. Furthermore, the studied AGB-ILs display a higher ability to form ABS and to extract amino acids than ABS composed of more traditional and commercial ILs. In summary, novel ABS composed of AGB-ILs can be formed and used as separation routes of value-added compounds of biotechnological interest. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018 © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1205-1212, 2018.


Assuntos
Betaína/química , Líquidos Iônicos/química , Água/química , Aminoácidos/química , Biotecnologia , Fracionamento Químico , Temperatura
17.
Biochem Mol Biol Educ ; 46(4): 390-397, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29694708

RESUMO

Aqueous biphasic systems (ABS) composed of polypropylene glycol and carbohydrates, two benign substances are proposed to separate two food colorants (E122 and E133). ABS are promising extractive platforms, particularly for biomolecules, due to their aqueous and mild nature (pH and temperature), reduced environmental impact and processing costs. Another major aspect considered, particularly useful in downstream processing, is the "tuning" ability for the extraction and purification of these systems by a proper choice of the ABS components. In this work, our intention is to show the concept of ABS as an alternative and volatile organic solvent-free tool to separate two different biomolecules in a simple way, so simple that teachers can effectively adopt it in their classes to explain the concept of bioseparation processes. Informative documents and general information about the preparation of binodal curves and their use in the partition of biomolecules is available in this work to be used by teachers in their classes. In this sense, the students use different carbohydrates to build ABS, then study the partition of two food color dyes (synthetic origin), thus evaluating their ability on the separation of both food colorants. Through these experiments, the students get acquainted with ABS, learn how to determine solubility curves and perform extraction procedures using colorant food additives, that can also be applied in the extraction of various (bio)molecules. © 2018 by The International Union of Biochemistry and Molecular Biology, 46:390-397, 2018.


Assuntos
Carboidratos/química , Corantes de Alimentos/química , Corantes de Alimentos/isolamento & purificação , Polímeros/química , Aprendizagem Baseada em Problemas , Propilenoglicóis/química , Humanos , Professores Escolares , Estudantes , Água/química
18.
Phys Chem Chem Phys ; 18(30): 20571-20582, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27405841

RESUMO

Novel ternary phase diagrams of aqueous biphasic systems (ABSs) composed of polypropylene glycol with an average molecular weight of 400 g mol(-1) (PPG-400) and a vast number of ionic liquids (ILs) were determined. The large array of selected ILs allowed us to evaluate their tuneable structural features, namely the effect of the anion nature, cation core and cation alkyl side chain length on the phase behaviour. Additional evidence on the molecular-level mechanisms which rule the phase splitting was obtained by (1)H NMR (Nuclear Magnetic Resonance) spectroscopy and by COSMO-RS (Conductor-like Screening Model for Real Solvents). Some systems, for which the IL-PPG-400 pairs are completely miscible, revealed to be of type "0". All data collected suggest that the formation of PPG-IL-based ABSs is controlled by the interactions established between the IL and PPG, contrarily to previous reports where a "salting-out" phenomenon exerted by the IL over the polymer in aqueous media was proposed as the dominant effect in ABS formation. The influence of temperature on the liquid-liquid demixing was also evaluated. In general, an increase in temperature favours the formation of an ABS in agreement with the lower critical solution temperature (LCST) phase behaviour usually observed in polymer-IL binary mixtures. Partition results of a dye (chloroanilic acid, in its neutral form) further confirm the possibility of tailoring the phases' polarities of IL-PPG-based ABSs.

19.
Green Chem ; 18(22): 6071-6081, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28255278

RESUMO

In the past decade, remarkable advances in the production and use of antibodies as therapeutic drugs and in research/diagnostic fields have led to their recognition as value-added proteins. These biopharmaceuticals have become increasingly important, reinforcing the current demand for the development of more benign, scalable and cost-effective techniques for their purification. Typical polymer-polymer and polymer-salt aqueous biphasic systems (ABS) have been studied for such a goal; yet, the limited polarity range of the coexisting phases and their low selective nature still are their major drawbacks. To overcome this limitation, in this work, ABS formed by bio-based ionic liquids (ILs) and biocompatible polymers were investigated. Bio-based ILs composed of ions derived from natural sources, namely composed of the cholinium cation and anions derived from plants natural acids, have been designed, synthesized, characterized and used for the creation of ABS with polypropyleneglycol (PPG 400). The respective ternary phase diagrams were initially determined at 25 °C to infer on mixture compositions required to form aqueous systems of two phases, further applied in the extraction of pure immunoglobulin G (IgG) to identify the most promising bio-based ILs, and finally employed in the purification of IgG from complex and real matrices of rabbit serum. Remarkably, the complete extraction of IgG to the IL-rich phase was achieved in a single-step. With pure IgG a recovery yield of 100% was obtained, while with rabbit serum this value slightly decreased to ca. 85%. Nevertheless, a 58% enhancement in the IgG purity was achieved when compared with its purity in serum samples. The stability of IgG before and after extraction was also evaluated by size exclusion high-performance liquid chromatography (SE-HPLC), sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared spectroscopy (FTIR). In most ABS formed by bio-based ILs, IgG retained its native structure, without degradation or denaturation effects, supporting thus their potential as remarkable platforms for the purification of high-cost biopharmaceuticals.

20.
Biotechnol J ; 10(9): 1457-66, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25864445

RESUMO

Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) are promising platforms for the extraction and purification of proteins. In this work, a series of alternative and biocompatible ABS composed of cholinium-based ILs and polypropylene glycol were investigated. The respective ternary phase diagrams, tie-lines, tie-line lengths and critical points were determined at 25°C. The extraction performance of these systems for commercial bovine serum albumin (BSA) was then evaluated. The stability of BSA at the IL-rich phase was ascertained by size exclusion high-performance liquid chromatography and Fourier transform infrared spectroscopy. Appropriate ILs lead to the complete extraction of BSA for the IL-rich phase, in a single step, while maintaining the protein's native conformation. Furthermore, to evaluate the performance of these systems when applied to real matrices, the extraction of BSA from bovine serum was additionally carried out, revealing that the complete extraction of BSA was maintained and achieved in a single step. The remarkable extraction efficiencies obtained are far superior to those observed with typical polymer-based ABS. Therefore, the proposed ABS may be envisaged as a more effective and biocompatible approach for the separation and purification of other value-added proteins.


Assuntos
Fracionamento Químico/métodos , Colina/química , Líquidos Iônicos/química , Proteínas/química , Proteínas/isolamento & purificação , Animais , Bovinos , Cromatografia em Gel , Estabilidade Proteica , Soroalbumina Bovina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA