Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16821, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798298

RESUMO

Amongst the potential contribution of protein or peptide-display systems to study epitopes with relevant immunological features, the RAD display system stands out as a highly stable scaffold protein that allows the presentation of constrained target peptides. Here, we employed the RAD display system to present peptides derived from the SARS-CoV-2 Spike (S) protein as a tool to detect specific serum antibodies and to generate polyclonal antibodies capable of inhibiting SARS-CoV-2 infectivity in vitro. 44 linear S-derived peptides were genetically fused with the RAD scaffold (RAD-SCoV-epitopes) and screened for antigenicity with sera collected from COVID-19-infected patients. In a second step, selected RAD-SCoV-epitopes were used to immunize mice and generate antibodies. Phenotypic screening showed that some of these antibodies were able to recognize replicating viral particles in VERO CCL-81 and most notably seven of the RAD-SCoV-epitopes were able to induce antibodies that inhibited viral infection. Our findings highlight the RAD display system as an useful platform for the immunological characterization of peptides and a potentially valuable strategy for the design of antigens for peptide-based vaccines, for epitope-specific antibody mapping, and for the development of antibodies for diagnostic and therapeutic purposes.


Assuntos
COVID-19 , Pyrococcus furiosus , Humanos , Animais , Camundongos , Epitopos , Glicoproteína da Espícula de Coronavírus/metabolismo , Pyrococcus furiosus/metabolismo , Anticorpos Antivirais , Proteínas do Envelope Viral , SARS-CoV-2 , Peptídeos/química , Anticorpos Neutralizantes
2.
Molecules ; 26(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34443484

RESUMO

The COVID-19 outbreak has rapidly spread on a global scale, affecting the economy and public health systems throughout the world. In recent years, peptide-based therapeutics have been widely studied and developed to treat infectious diseases, including viral infections. Herein, the antiviral effects of the lysine linked dimer des-Cys11, Lys12,Lys13-(pBthTX-I)2K ((pBthTX-I)2K)) and derivatives against SARS-CoV-2 are reported. The lead peptide (pBthTX-I)2K and derivatives showed attractive inhibitory activities against SARS-CoV-2 (EC50 = 28-65 µM) and mostly low cytotoxic effect (CC50 > 100 µM). To shed light on the mechanism of action underlying the peptides' antiviral activity, the Main Protease (Mpro) and Papain-Like protease (PLpro) inhibitory activities of the peptides were assessed. The synthetic peptides showed PLpro inhibition potencies (IC50s = 1.0-3.5 µM) and binding affinities (Kd = 0.9-7 µM) at the low micromolar range but poor inhibitory activity against Mpro (IC50 > 10 µM). The modeled binding mode of a representative peptide of the series indicated that the compound blocked the entry of the PLpro substrate toward the protease catalytic cleft. Our findings indicated that non-toxic dimeric peptides derived from the Bothropstoxin-I have attractive cellular and enzymatic inhibitory activities, thereby suggesting that they are promising prototypes for the discovery and development of new drugs against SARS-CoV-2 infection.


Assuntos
Venenos de Crotalídeos/química , Dimerização , Papaína/antagonistas & inibidores , Peptídeos/química , Peptídeos/farmacologia , SARS-CoV-2/enzimologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Papaína/química , Papaína/metabolismo , Peptídeos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Conformação Proteica , SARS-CoV-2/efeitos dos fármacos
3.
Genet Mol Biol ; 44(1 Suppl 1): e20200198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33275129

RESUMO

The emergence of the new corona virus (SARS-CoV-2) and the resulting COVID-19 pandemic requires fast development of novel prevention and therapeutic strategies. These rely on understanding the biology of the virus and its interaction with the host, and on agnostic phenotypic screening for compounds that prevent viral infection. In vitro screenings of compounds are usually performed in human or animal-derived tumor or immortalized cell lines due to their ease of culturing. However, these platforms may not represent the tissues affected by the disease in vivo, and therefore better models are needed to validate and expedite drug development, especially in face of the COVID-19 pandemic. In this scenario, human induced pluripotent stem cells (hiPSCs) are a powerful research tool due to their ability to generate normal differentiated cell types relevant for the disease. Here we discuss the different ways hiPSCs can contribute to COVID-19 related research, including modeling the disease in vitro and serving as a platform for drug screening.

4.
Bioorg Med Chem ; 28(22): 115746, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007558

RESUMO

Human T cell lymphotropic virus type 1 (HTLV-1) is a human retrovirus that infects approximately 10-20 million people worldwide and causes an aggressive neoplasia (adult T-cell leukemia/lymphoma - ATL). Therapeutic approaches for the treatment of ATL have variable effectiveness and poor prognosis, thus requiring strategies to identify novel compounds with activity on infected cells. In this sense, we initially screened a small series of 25 1,2,3-triazole derivatives to discover cell proliferation inhibitors and apoptosis inducers in HTLV-1-infected T-cell line (MT-2) for further assessment of their effect on viral tax activity through inducible-tax reporter cell line (Jurkat LTR-GFP). Eight promising compounds (02, 05, 06, 13, 15, 21, 22 and 25) with activity ≥70% were initially selected, based on a suitable cell-based assay using resazurin reduction method, and evaluated towards cell cycle, apoptosis and Tax/GFP expression analyses through flow cytometry. Compound 02 induced S phase cell cycle arrest and compounds 05, 06, 22 and 25 promoted apoptosis. Remarkably, compounds 22 and 25 also reduced GFP expression in an inducible-tax reporter cell, which suggests an effect on Tax viral protein. More importantly, compounds 02, 22 and 25 were not cytotoxic in human hepatoma cell line (Huh-7). Therefore, the discovery of 3 active and non-cytotoxic compounds against HTLV-1-infected cells can potentially contribute, as an initial promising strategy, to the development process of new drugs against ATL.


Assuntos
Antivirais/farmacologia , Produtos do Gene tax/antagonistas & inibidores , Compostos Heterocíclicos/farmacologia , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Triazóis/farmacologia , Antivirais/síntese química , Antivirais/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Produtos do Gene tax/metabolismo , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química
5.
Biomolecules ; 10(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443921

RESUMO

In recent years, the number of new antimicrobial drugs launched on the market has decreased considerably even though there has been an increase in the number of resistant microbial strains. Thus, antimicrobial resistance has become a serious public health problem. Amphibian skin secretions are a rich source of host defense peptides, which generally are cationic and hydrophobic molecules, with a broad-spectrum of activity. In this study, one novel multifunctional defense peptide was isolated from the skin secretion of the Chaco tree frog, Boana raniceps. Figainin 2 (1FLGAILKIGHALAKTVLPMVTNAFKPKQ28) is cationic and hydrophobic, adopts an α-helical structure in 50% (v/v) trifluoroethanol (TFE), and is thermally stable. This peptide exhibited activity against Gram-negative and Gram-positive pathogenic bacteria arboviruses, T. cruzi epimastigotes; however, it did not show activity against yeasts. Figainin 2 also showed antiproliferative activity on cancer cells, is moderately active on human erythrocytes, and activates the oxidative burst in human neutrophils.


Assuntos
Proteínas de Anfíbios/metabolismo , Anuros/metabolismo , Defensinas/metabolismo , Pele/metabolismo , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Animais , Arbovírus/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Candida/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Defensinas/química , Defensinas/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Neutrófilos/efeitos dos fármacos , Conformação Proteica em alfa-Hélice , Trypanosoma cruzi/efeitos dos fármacos
6.
Int J Mol Sci ; 21(10)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455951

RESUMO

Chagas disease is an illness caused by the protozoan parasite Trypanosoma cruzi, affecting more than 7 million people in the world. Benznidazole and nifurtimox are the only drugs available for treatment and in addition to causing several side effects, are only satisfactory in the acute phase of the disease. Sirtuins are NAD+-dependent deacetylases involved in several biological processes, which have become drug target candidates in various disease settings. T. cruzi presents two sirtuins, one cytosolic (TcSir2rp1) and the latter mitochondrial (TcSir2rp3). Here, we characterized the effects of human sirtuin inhibitors against T. cruzi sirtuins as an initial approach to develop specific parasite inhibitors. We found that, of 33 compounds tested, two inhibited TcSir2rp1 (15 and 17), while other five inhibited TcSir2rp3 (8, 12, 13, 30, and 32), indicating that specific inhibitors can be devised for each one of the enzymes. Furthermore, all inhibiting compounds prevented parasite proliferation in cultured mammalian cells. When combining the most effective inhibitors with benznidazole at least two compounds, 17 and 32, demonstrated synergistic effects. Altogether, these results support the importance of exploring T. cruzi sirtuins as drug targets and provide key elements to develop specific inhibitors for these enzymes as potential targets for Chagas disease treatment.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Sirtuínas/antagonistas & inibidores , Sirtuínas/metabolismo , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Histona Desacetilases do Grupo III/antagonistas & inibidores , Concentração Inibidora 50 , Macaca mulatta , Simulação de Acoplamento Molecular , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sirtuínas/química , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade
7.
Bioorg Med Chem ; 27(22): 115083, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561938

RESUMO

The structure-activity relationship for nitrile-based cruzain inhibitors incorporating a P2 amide replacement based on trifluoroethylamine was explored by deconstruction of a published series of inhibitors. It was demonstrated that the P3 biphenyl substituent present in the published inhibitor structures could be truncated to phenyl with only a small loss of affinity. The effects of inverting the configuration of the P2 amide replacement and linking a benzyl substituent at P1 were observed to be strongly nonadditive. We show that plotting affinity against molecular size provides a means to visualize both the molecular size efficiency of structural transformations and the nonadditivity in the structure-activity relationship. We also show how the relationship between affinity and lipophilicity, measured by high-performance liquid chromatography with an immobilized artificial membrane stationary phase, may be used to normalize affinity with respect to lipophilicity.


Assuntos
Amidas/química , Cisteína Endopeptidases/síntese química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/síntese química , Estrutura Molecular , Relação Estrutura-Atividade
8.
ChemMedChem ; 13(7): 678-683, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29451361

RESUMO

Protozoan infections caused by Plasmodium, Leishmania, and Trypanosoma spp. contribute significantly to the burden of infectious diseases worldwide, causing severe morbidity and mortality. The inadequacy of available treatments calls for cost- and time-effective drug discovery endeavors. To this end, we envisaged the triazole linkage of privileged structures as an effective drug design strategy to generate a focused library of high-quality compounds. The versatility of this approach was combined with the feasibility of a phenotypic assay, integrated with early ADME-tox profiling. Thus, an 18-membered library was efficiently assembled via Huisgen cycloaddition of phenothiazine, biphenyl, and phenylpiperazine scaffolds. The resulting 18 compounds were then tested against seven parasite strains, and counter-screened for selectivity against two mammalian cell lines. In parallel, hERG and cytochrome P450 (CYP) inhibition, and mitochondrial toxicity were assessed. Remarkably, 10-((1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-5-yl)methyl)-10H-phenothiazine (7) and 10-(3-(1-(3-([1,1'-biphenyl]-3-yloxy)propyl)-1H-1,2,3-triazol-4-yl)propyl)-10H-phenothiazine (12) showed respective IC50 values of 1.8 and 1.9 µg mL-1 against T. cruzi, together with optimal selectivity. In particular, compound 7 showed a promising ADME-tox profile. Thus, hit 7 might be progressed as an antichagasic lead.


Assuntos
Antiprotozoários/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Triazóis/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Antiprotozoários/toxicidade , Linhagem Celular Tumoral , Inibidores das Enzimas do Citocromo P-450/síntese química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Inibidores das Enzimas do Citocromo P-450/toxicidade , Canal de Potássio ERG1/metabolismo , Humanos , Leishmania/efeitos dos fármacos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/toxicidade , Ratos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/toxicidade , Triazóis/síntese química , Triazóis/química , Triazóis/toxicidade , Trypanosoma/efeitos dos fármacos
9.
Eur J Med Chem ; 146: 423-434, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29407968

RESUMO

Basing on a library of thiadiazole derivatives showing anti-trypanosomatidic activity, we have considered the thiadiazoles opened forms and reaction intermediates, thiosemicarbazones, as compounds of interest for phenotypic screening against Trypanosoma brucei (Tb), intracellular amastigote form of Leishmania infantum (Li) and Trypanosoma cruzi (Tc). Similar compounds have already shown interesting activity against the same organisms. The compounds were particularly effective against T. brucei and T. cruzi. Among the 28 synthesized compounds, the best one was (E)-2-(4-((3.4-dichlorobenzyl)oxy)benzylidene) hydrazinecarbothioamide (A14) yielding a comparable anti-parasitic activity against the three parasitic species (TbEC50 = 2.31 µM, LiEC50 = 6.14 µM, TcEC50 = 1.31 µM) and a Selectivity Index higher than 10 with respect to human macrophages, therefore showing a pan-anti-trypanosomatidic activity. (E)-2-((3'.4'-dimethoxy-[1.1'-biphenyl]-3-yl)methyle ne) hydrazinecarbothioamide (A12) and (E)-2-(4-((3.4-dichlorobenzyl)oxy)benzylidene)hydrazine carbothioamide (A14) were able to potentiate the anti-parasitic activity of methotrexate (MTX) when evaluated in combination against T. brucei, yielding a 6-fold and 4-fold respectively Dose Reduction Index for MTX. The toxicity profile against four human cell lines and a panel of in vitro early-toxicity assays (comprising hERG, Aurora B, five cytochrome P450 isoforms and mitochondrial toxicity) demonstrated the low toxicity for the thosemicarbazones class in comparison with known drugs. The results confirmed thiosemicarbazones as a suitable chemical scaffold with potential for the development of properly decorated new anti-parasitic drugs.


Assuntos
Antiprotozoários/farmacologia , Doença de Chagas/tratamento farmacológico , Tiossemicarbazonas/farmacologia , Trypanosoma/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
10.
Eur J Med Chem ; 141: 138-148, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031061

RESUMO

Crassiflorone is a natural product with anti-mycobacterial and anti-gonorrhoeal properties, isolated from the stem bark of the African ebony tree Diospyros crassiflora. We noticed that its pentacyclic core possesses structural resemblance to the quinone-coumarin hybrid 3, which we reported to exhibit a dual-targeted inhibitory profile towards Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase (TbGAPDH) and Trypanosoma cruzi trypanothione reductase (TcTR). Following this basic idea, we synthesized a small library of crassiflorone derivatives 15-23 and investigated their potential as anti-trypanosomatid agents. 19 is the only compound of the series showing a balanced dual profile at 10 µM (% inhibitionTbGAPDH = 64% and % inhibitionTcTR = 65%). In phenotypic assay, the most active compounds were 18 and 21, which at 5 µM inhibited Tb bloodstream-form growth by 29% and 38%, respectively. Notably, all the newly synthesized compounds at 10 µM did not affect viability and the status of mitochondria in human A549 and 786-O cell lines, respectively. However, further optimization that addresses metabolic liabilities including solubility, as well as cytochromes P450 (CYP1A2, CYP2C9, CYP2C19, and CYP2D6) inhibition, is required before this class of natural product-derived compounds can be further progressed.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , NADH NADPH Oxirredutases/antagonistas & inibidores , Quinonas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , NADH NADPH Oxirredutases/metabolismo , Testes de Sensibilidade Parasitária , Quinonas/síntese química , Quinonas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/crescimento & desenvolvimento
11.
Bioorg Med Chem Lett ; 27(22): 5031-5035, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29054358

RESUMO

The effects on potency of cruzain inhibition of replacing a nitrile group with alternative warheads were explored. The oxime was almost an order of magnitude more potent than the corresponding nitrile and has the potential to provide access to the prime side of the catalytic site. Dipeptide aldehydes and azadipeptide nitriles were found to be two orders of magnitude more potent cruzain inhibitors than the corresponding dipeptide nitriles although potency differences were modulated by substitution at P1 and P3. Replacement of the α methylene of a dipeptide aldehyde with cyclopropane led to a loss of potency of almost three orders of magnitude. The vinyl esters and amides that were characterized as reversible inhibitors were less potent than the corresponding nitrile by between one and two orders of magnitude.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Domínio Catalítico , Catepsina L/química , Catepsina L/metabolismo , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/metabolismo , Dipeptídeos/química , Desenho de Fármacos , Cinética , Nitrilas/química , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 27(11): 2459-2464, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28434763

RESUMO

Leishmaniasis are infectious diseases caused by parasites of genus Leishmania that affect affects 12 million people in 98 countries mainly in Africa, Asia, and Latin America. Effective treatments for this disease are urgently needed. In this study, we present a computer-aided approach to investigate a set of 32 recently synthesized chalcone and chalcone-like compounds to act as antileishmanial agents. As a result, nine most promising compounds and three potentially inactive compounds were experimentally evaluated against Leishmania infantum amastigotes and mammalian cells. Four compounds exhibited EC50 in the range of 6.2-10.98µM. In addition, two compounds, LabMol-65 and LabMol-73, exhibited cytotoxicity in macrophages >50µM that resulted in better selectivity compared to standard drug amphotericin B. These two compounds also demonstrated low cytotoxicity and high selectivity towards Vero cells. The results of target fishing followed by homology modeling and docking studies suggest that these chalcone compounds could act in Leishmania because of their interaction with cysteine proteases, such as procathepsin L. Finally, we have provided structural recommendations for designing new antileishmanial chalcones.


Assuntos
Antiprotozoários/farmacologia , Chalconas/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Leishmania infantum/efeitos dos fármacos , Nitrofuranos/farmacologia , Piperazinas/farmacologia , Piperidinas/farmacologia , Anfotericina B/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Chalconas/síntese química , Chalconas/química , Chlorocebus aethiops , Simulação por Computador , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Bases de Dados Factuais , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Nitrofuranos/síntese química , Nitrofuranos/química , Piperazinas/síntese química , Piperazinas/química , Piperidinas/síntese química , Piperidinas/química , Relação Estrutura-Atividade , Células Vero
13.
Eur J Med Chem ; 126: 1129-1135, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28064141

RESUMO

Chalcones display a broad spectrum of pharmacological activities. Herein, a series of 2'-hydroxy methoxylated chalcones was synthesized and evaluated towards Trypanosoma brucei, Trypanosoma cruzi and Leishmania infantum. Among the synthesized library, compounds 1, 3, 4, 7 and 8 were the most potent and selective anti-T. brucei compounds (EC50 = 1.3-4.2 µM, selectivity index >10-fold). Compound 4 showed the best early-tox and antiparasitic profile. The pharmacokinetic studies of compound 4 in BALB/c mice using hydroxypropil-ß-cyclodextrins formulation showed a 7.5 times increase in oral bioavailability.


Assuntos
Antiparasitários/química , Antiparasitários/farmacologia , Chalconas/química , Chalconas/farmacologia , Animais , Antiparasitários/farmacocinética , Antiparasitários/toxicidade , Linhagem Celular Tumoral , Chalconas/farmacocinética , Chalconas/toxicidade , Ciclodextrinas/química , Portadores de Fármacos/química , Camundongos , Solubilidade , Trypanosomatina/efeitos dos fármacos
14.
Eur J Med Chem ; 121: 553-560, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27318979

RESUMO

Chagas disease, caused by Trypanosoma cruzi, is a parasitosis that predominates in Latin America. It is estimated that 25 million people are under the risk of infection and, in 2008, more than 10 thousand deaths were registered. The only two drugs available in the therapeutics, nifurtimox and benznidazole, showed to be more effective in the acute phase of the disease. However, there is no standard treatment protocol effective for the chronic phase. Nitrofurazone (NF), an antimicrobial drug, has activity against T. cruzi, although being toxic. Considering the need for new antichagasic drugs, the existence of promising new therapeutic targets, as 14α-sterol demethylase and cruzain, and employing the bioisosterism and molecular hybridization approaches, four novel compounds were synthesized, characterized by melting point range, elemental analysis, IR and NMR spectroscopy. The compounds were tested against T. cruzi amastigotes in infected U2OS cells. All compounds showed selectivity towards T. cruzi and showed trypanomicidal activity in low micromolar range. The compound 3 showed potency similar to benznidazole, but lower efficacy. These results highlight the importance of the 1,2,4-triazole, thiosemicarbazonic and nitro group moieties for designing new efficient compounds, potentially for the chronic phase of Chagas disease.


Assuntos
Nitrofurazona/síntese química , Nitrofurazona/farmacologia , Triazóis/química , Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Hidrazonas/química , Modelos Moleculares , Conformação Molecular , Nitrofurazona/química , Tripanossomicidas/química
15.
Infect Immun ; 83(5): 1853-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690103

RESUMO

Leishmania donovani, a protozoan parasite, is the causative agent of visceral leishmaniasis. It lives and multiplies within the harsh environment of macrophages. In order to investigate how intracellular parasite manipulate the host cell environment, we undertook a quantitative proteomic study of human monocyte-derived macrophages (THP-1) following infection with L. donovani. We used the isobaric tags for relative and absolute quantification (iTRAQ) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare expression profiles of noninfected and L. donovani-infected THP-1 cells. We detected modifications of protein expression in key metabolic pathways, including glycolysis and fatty acid oxidation, suggesting a global reprogramming of cell metabolism by the parasite. An increased abundance of proteins involved in gene transcription, RNA splicing (heterogeneous nuclear ribonucleoproteins [hnRNPs]), histones, and DNA repair and replication was observed at 24 h postinfection. Proteins involved in cell survival and signal transduction were more abundant at 24 h postinfection. Several of the differentially expressed proteins had not been previously implicated in response to the parasite, while the others support the previously identified proteins. Selected proteomics results were validated by real-time PCR and immunoblot analyses. Similar changes were observed in L. donovani-infected human monocyte-derived primary macrophages. The effect of RNA interference (RNAi)-mediated gene knockdown of proteins validated the relevance of the host quantitative proteomic screen. Our findings indicate that the host cell proteome is modulated after L. donovani infection, provide evidence for global reprogramming of cell metabolism, and demonstrate the complex relations between the host and parasite at the molecular level.


Assuntos
Leishmania donovani/imunologia , Macrófagos/química , Macrófagos/parasitologia , Proteoma/análise , Linhagem Celular , Cromatografia Líquida , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Macrófagos/imunologia , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
16.
J Med Chem ; 57(17): 7425-34, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25137549

RESUMO

New antimalarial agents that exhibit multistage activities against drug-resistant strains of malaria parasites represent good starting points for developing next-generation antimalarial therapies. To facilitate the progression of such agents into the development phase, we developed an image-based parasitological screening method for defining drug effects on different asexual life cycle stages of Plasmodium falciparum. High-throughput screening of a newly assembled diversity-oriented synthetic library using this approach led to the identification of carbohybrid-based 2-aminopyrimidine compounds with fast-acting growth inhibitory activities against three laboratory strains of multidrug-resistant P. falciparum. Our structure-activity relationship study led to the identification of two derivatives (8aA and 11aA) as the most promising antimalarial candidates (mean EC50 of 0.130 and 0.096 µM against all three P. falciparum strains, selectivity indices >600, microsomal stabilities >80%, and mouse malaria ED50 values of 0.32 and 0.12 mg/kg/day, respectively), targeting all major blood stages of multidrug-resistant P. falciparum parasites.


Assuntos
Antimaláricos/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Pirimidinas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/farmacocinética , Área Sob a Curva , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Interações Hospedeiro-Parasita/efeitos dos fármacos , Humanos , Malária/parasitologia , Malária/prevenção & controle , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos BALB C , Modelos Químicos , Estrutura Molecular , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium chabaudi/fisiologia , Plasmodium falciparum/crescimento & desenvolvimento , Pirimidinas/química , Pirimidinas/farmacocinética , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
17.
Biomed Res Int ; 2014: 835013, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24877138

RESUMO

Nefang, a polyherbal product composed of Mangifera indica (bark and leaf), Psidium guajava, Carica papaya, Cymbopogon citratus, Citrus sinensis, and Ocimum gratissimum (leaves), is a potential therapy against P. falciparum malaria. In vitro antiplasmodial activities of its constituent solvent extracts were analyzed on CQ-sensitive (3D7) and multidrug resistant (Dd2) P. falciparum strains. The interactions involving the differential solvent extracts were further analyzed using a variable potency ratio drug combination approach. Effective concentration 50 (EC50) values were determined by nonlinear regression curve-fitting of the dose-response data and used in calculating the fractional inhibitory concentration 50 (FIC50) and combination indices (CI) for each pair. The derived EC50 values (3D7/Dd2, µ g/mL) are Nefang-96.96/55.08, MiB-65.33/34.58, MiL-82.56/40.04, Pg-47.02/25.79, Cp-1188/317.5, Cc-723.3/141, Cs-184.4/105.1, and Og-778.5/118.9. Synergism was obtained with MiB/Pg (CI = 0.351), MiL/Pg (0.358), MiB/Cs (0.366), MiL/Cs (0.482), Pg/Cs (0.483), and Cs/Og (0.414) when analyzed at equipotency ratios. Cytotoxicity testing of Nefang and the solvent extracts on two human cell lines (Hep G2 and U2OS) revealed no significant toxicity relative to their antiplasmodial activities (SI > 20). Taken together, our data confirm the antimalarial activities of Nefang and its constituent plant extracts and identified extract pairs with promising synergistic interactions for exploitation towards a rational phytotherapeutic and evidence-based antimalarial drug discovery.


Assuntos
Antimaláricos , Malária Falciparum/tratamento farmacológico , Extratos Vegetais , Plasmodium falciparum , Solventes/química , Antimaláricos/química , Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
18.
J Med Chem ; 57(7): 3126-39, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24568559

RESUMO

We report the discovery of a series of new drug leads that have potent activity against Mycobacterium tuberculosis as well as against other bacteria, fungi, and a malaria parasite. The compounds are analogues of the new tuberculosis (TB) drug SQ109 (1), which has been reported to act by inhibiting a transporter called MmpL3, involved in cell wall biosynthesis. We show that 1 and the new compounds also target enzymes involved in menaquinone biosynthesis and electron transport, inhibiting respiration and ATP biosynthesis, and are uncouplers, collapsing the pH gradient and membrane potential used to power transporters. The result of such multitarget inhibition is potent inhibition of TB cell growth, as well as very low rates of spontaneous drug resistance. Several targets are absent in humans but are present in other bacteria, as well as in malaria parasites, whose growth is also inhibited.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Descoberta de Drogas , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Feminino , Fungos/efeitos dos fármacos , Humanos , Células MCF-7 , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Modelos Moleculares , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Células Tumorais Cultivadas
19.
PLoS Negl Trop Dis ; 6(6): e1671, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720099

RESUMO

Leishmaniasis is a tropical disease threatening 350 million people from endemic regions. The available drugs for treatment are inadequate, with limitations such as serious side effects, parasite resistance or high cost. Driven by this need for new drugs, we developed a high-content, high-throughput image-based screening assay targeting the intracellular amastigote stage of different species of Leishmania in infected human macrophages. The in vitro infection protocol was adapted to a 384-well-plate format, enabling acquisition of a large amount of readouts by automated confocal microscopy. The reading method was based on DNA staining and required the development of a customized algorithm to analyze the images, which enabled the use of non-modified parasites. The automated analysis generated parameters used to quantify compound activity, including infection ratio as well as the number of intracellular amastigote parasites and yielded cytotoxicity information based on the number of host cells. Comparison of this assay with one that used the promastigote form to screen 26,500 compounds showed that 50% of the hits selected against the intracellular amastigote were not selected in the promastigote screening. These data corroborate the idea that the intracellular amastigote form of the parasite is the most appropriate to be used in primary screening assay for Leishmania.


Assuntos
Antiprotozoários/isolamento & purificação , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Leishmania donovani/efeitos dos fármacos , Macrófagos/parasitologia , Automação/métodos , Linhagem Celular , DNA/análise , Humanos , Microscopia Confocal/métodos , Coloração e Rotulagem/métodos
20.
PLoS Negl Trop Dis ; 4(5): e675, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20454559

RESUMO

Drugs currently available for leishmaniasis treatment often show parasite resistance, highly toxic side effects and prohibitive costs commonly incompatible with patients from the tropical endemic countries. In this sense, there is an urgent need for new drugs as a treatment solution for this neglected disease. Here we show the development and implementation of an automated high-throughput viability screening assay for the discovery of new drugs against Leishmania. Assay validation was done with Leishmania promastigote forms, including the screening of 4,000 compounds with known pharmacological properties. In an attempt to find new compounds with leishmanicidal properties, 26,500 structurally diverse chemical compounds were screened. A cut-off of 70% growth inhibition in the primary screening led to the identification of 567 active compounds. Cellular toxicity and selectivity were responsible for the exclusion of 78% of the pre-selected compounds. The activity of the remaining 124 compounds was confirmed against the intramacrophagic amastigote form of the parasite. In vitro microsomal stability and cytochrome P450 (CYP) inhibition of the two most active compounds from this screening effort were assessed to obtain preliminary information on their metabolism in the host. The HTS approach employed here resulted in the discovery of two new antileishmanial compounds, bringing promising candidates to the leishmaniasis drug discovery pipeline.


Assuntos
Antiprotozoários/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Leishmania/efeitos dos fármacos , Antiprotozoários/toxicidade , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Estabilidade de Medicamentos , Humanos , Macrófagos/parasitologia , Viabilidade Microbiana/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Monócitos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA