Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(12): 2495-2505, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948120

RESUMO

The ellagitannins vescalagin and vescalin, known as actin-dependent inhibitors of osteoclastic bone resorption, were mounted onto chemical probes to explore their interactions with bone cell proteins by means of affinity-based chemoproteomics and bioinformatics. The chemical reactivity of the pyrogallol units of these polyphenols toward oxidation into electrophilic ortho-quinones was exploited using NaIO4 to promote the covalent capture of target proteins, notably those expressed at lower abundance and those interacting with polyphenols at low-to-moderate levels of affinity. Different assays revealed the multitarget nature of both ellagitannins, with 100-370 statistically significant proteins captured by their corresponding probes. A much higher number of proteins were captured from osteoclasts than from osteoblasts. Bioinformatic analyses unveiled a preference for the capture of proteins having phosphorylated ligands and GTPase regulators and enabled the identification of 33 potential target proteins with systemic relevance to osteoclast differentiation and activity, as well as to the regulation of actin dynamics.


Assuntos
Reabsorção Óssea , Taninos Hidrolisáveis , Humanos , Taninos Hidrolisáveis/metabolismo , Actinas/metabolismo , Polifenóis/metabolismo , Glucosídeos/metabolismo , Reabsorção Óssea/metabolismo , Osteoblastos/metabolismo , Diferenciação Celular
2.
Proc Natl Acad Sci U S A ; 120(23): e2221742120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252964

RESUMO

Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.


Assuntos
Fibrilina-1 , Síndrome de Marfan , Animais , Camundongos , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Síndrome de Marfan/genética , Síndrome de Marfan/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Methods Mol Biol ; 2608: 345-364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653717

RESUMO

Angiogenesis is the formation of new blood vessels from the existing vasculature. It is a fundamental process in developmental biology but also a pathological event that initiates or aggravates many diseases. In this complex multistep process, endothelial cells are activated by angiogenic stimuli; undergo specialization in response to VEGF/Notch signaling; degrade the basement membrane of the parent vessel; sprout, migrate, and proliferate to form capillary tubes that branch; and ultimately anastomose with adjacent vessels. Here we describe an assay that mimics the invasion step in vitro. Human microvascular endothelial cells are confronted by a VEGF-enriched basement membrane material in a three-dimensional environment that promotes endothelial cell sprouting, tube formation, and anastomosis. After a few hours, endothelial cells have become tip cells, and vascular sprouts can be observed by phase contrast, fluorescence, or time-lapse microscopy. Sprouting endothelial cells express tip cell markers, display podosomes and filopodia, and exhibit cell dynamics similar to those of angiogenic endothelial cells in vivo. This model provides a system that can be manipulated genetically to study physiological or pathological angiogenesis and that can be used to screen compounds for pro-/anti-angiogenic properties. In this chapter, we describe the key steps in setting up this assay.


Assuntos
Células Endoteliais , Podossomos , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica/fisiologia , Podossomos/metabolismo , Neovascularização Patológica/metabolismo
4.
Cell Mol Life Sci ; 79(4): 208, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347477

RESUMO

Angiogenesis involves cell specification orchestrated by regulatory interactions between the vascular endothelial growth factor and Notch signaling pathways. However, the role of microRNAs in these regulations remains poorly explored. Here we show that a controlled level of miR-155 is essential for proper angiogenesis. In the mouse retina angiogenesis model, antimiR-155 altered neovascularization. In vitro assays established that endogenous miR-155 is involved in podosome formation, activation of the proteolytic machinery and cell migration but not in morphogenesis. The role of miR-155 was explored using miR-155 mimics. In vivo, exposing the developing vasculature to miR-155 promoted hypersprouting, thus phenocopying defects associated with Notch deficiency. Mechanistically, miR-155 overexpression weakened Notch signaling by reducing Smad1/5 expression, leading to the formation of tip cell-like cells which did not reach full invasive capacity and became unable to undergo morphogenesis. These results identify miR-155 as a novel regulator of physiological angiogenesis and as a novel actor of pathological angiogenesis.


Assuntos
MicroRNAs , Neovascularização Fisiológica , Animais , Camundongos , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética
5.
Eur J Cell Biol ; 99(4): 151084, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32439218

RESUMO

Invadosomes are specialised actin-based dynamic microdomains of the plasma membrane. Their occurrence has been associated with cell adhesion, matrix degrading and mechanosensory functions that make them crucial regulators of cell migration and invasion. Monocytic, cancer cell and Src-transformed cell invadosomes have been extensively described. Less well defined are the structures which form in other cell types, i.e., non-haematopoietic and non-transformed cells, exposed to specific stimuli. We herein describe the specificities of podosomes induced in aortic endothelial cells stimulated with TGFß in vitro and in conditions that more closely resemble the in vivo situation. These podosomes display the typical architecture of monocytic podosomes. They organise into large rosette-shape superstructures where they exhibit collective dynamic behavior consisting in cycles of formation and regression. At the ultrastructural level, microfilament arrangements in individual podosomes were revealed. Oxygen levels and hemodynamic forces, which are key players in endothelial cell biology, both influence the process. In 3D environment, podosomes appear as globular structures along cellular extensions. A better characterization of endothelial podosomes has far-reaching implications in the understanding and, possibly, in the treatment of some vascular diseases.


Assuntos
Aorta/anatomia & histologia , Células Endoteliais/metabolismo , Podossomos/metabolismo , Humanos
6.
Eur J Cell Biol ; 97(8): 533-545, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30287085

RESUMO

Actin subunits assemble into actin filaments whose dynamics and three-dimensional architectures are further regulated by a variety of cellular factors to establish the functional actin cytoskeleton. The C-glucosidic ellagitannin vescalagin and its simpler analogue vescalin, affect both the dynamics and the ultrastructure of the actin cytoskeleton by directly binding to F-actin. Herein, we show that in vitro, the two compounds induce the formation of distinct F-actin networks characterized by different superstructures and dynamics. In living mature osteoclasts, highly specialized bone-degrading cells that constantly remodel their cytoskeleton, vescalagin and vescalin alter actin dynamics at podosomes and compromise the integrity of the podosome belt that forms the bone-degrading apparatus. Both compounds target the bone-resorbing activity at concentrations that preserve osteoclastic maturation and survival and with no detectable impact on the behaviour of bone-forming osteoblastic cells. This anti-osteoclastic activity of vescalagin and vescalin reveals the potential of targeting actin dynamics as a new therapeutic opportunity and, in this case, as a plausible approach for the local treatment of osteoporosis.


Assuntos
Actinas/metabolismo , Glucosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Osteoclastos/citologia , Osteoclastos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Reabsorção Óssea/patologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Glucosídeos/química , Taninos Hidrolisáveis/química , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Podossomos/metabolismo , Polimerização
7.
Cell Rep ; 17(2): 484-500, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705796

RESUMO

During angiogenic sprouting, endothelial tip cells emerge from existing vessels in a process that requires vascular basement membrane degradation. Here, we show that F-actin/cortactin/P-Src-based matrix-degrading microdomains called podosomes contribute to this step. In vitro, VEGF-A/Notch signaling regulates the formation of functional podosomes in endothelial cells. Using a retinal neovascularization model, we demonstrate that tip cells assemble podosomes during physiological angiogenesis in vivo. In the retina, podosomes are also part of an interconnected network that surrounds large microvessels and impinges on the underlying basement membrane. Consistently, collagen-IV is scarce in podosome areas. Moreover, Notch inhibition exacerbates podosome formation and collagen-IV loss. We propose that the localized proteolytic action of podosomes on basement membrane collagen-IV facilitates endothelial cell sprouting and anastomosis within the developing vasculature. The identification of podosomes as key components of the sprouting machinery provides another opportunity to target angiogenesis therapeutically.


Assuntos
Colágeno Tipo IV/genética , Microvasos/metabolismo , Neovascularização Fisiológica/genética , Podossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Actinas/genética , Animais , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Cortactina/genética , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Microvasos/crescimento & desenvolvimento , Morfogênese/genética , Neovascularização Patológica/metabolismo , Proteólise , Receptores Notch/metabolismo , Retina/crescimento & desenvolvimento , Retina/metabolismo , Transdução de Sinais/genética , Quinases da Família src/genética
8.
J Cell Sci ; 129(13): 2586-98, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27231093

RESUMO

Podosomes are dynamic cell-matrix contact structures that combine several key abilities, including adhesion, matrix degradation and mechanosensing. These actin-based cytoskeletal structures have been mostly studied in monocytic cells, but much less is known about those formed in other lineages. In this study, we characterise podosomes in capillary-derived microvascular endothelial cells. We identify two types of podosomes: constitutive podosomes that form in the absence of specific stimulation and induced podosomes that arise in response to the angiogenic factor VEGF-A. Constitutive and VEGF-A-induced podosomes share similar components but exhibit marked differences in terms of gelatinolytic activity. We also show that the extracellular matrix proteins laminin and collagen-IV are key determinants of the VEGF-A response, but neither collagen-I nor fibronectin are conducive for podosome induction. Moreover, only collagen-IV elicits the formation of proteolytically active podosomes through a mechanism involving increased Src phosphorylation, p190RhoGAP-B (also known as ARHGAP5) relocalisation and MT1-MMP (also known as MMP14) cell surface exposure at podosome sites. We hypothesise that by promoting podosome formation, VEGF-A enables endothelial cells to overcome the basement membrane barrier to allow sprouting outwards from the existing vasculature.


Assuntos
Colágeno Tipo IV/genética , Proteínas Ativadoras de GTPase/genética , Metaloproteinase 14 da Matriz/genética , Podossomos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Actinas/genética , Colágeno Tipo IV/biossíntese , Citoesqueleto/genética , Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , Proteínas Ativadoras de GTPase/biossíntese , Regulação da Expressão Gênica , Humanos , Metaloproteinase 14 da Matriz/biossíntese , Fosforilação , Podossomos/genética , Proteólise , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
9.
Gut ; 64(9): 1466-75, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25183206

RESUMO

OBJECTIVE: Interleukin-26 (IL-26) is a member of the IL-10 cytokine family, first discovered based on its peculiar expression by virus-transformed T cells. IL-26 is overexpressed in chronic inflammation (rheumatoid arthritis and Crohn's disease) and induces proinflammatory cytokines by myeloid cells and some epithelial cells. We thus investigated the expression and potential role of IL-26 in chronic HCV infection, a pathology associated with chronic inflammation. DESIGN: IL-26 was quantified in a cohort of chronically HCV-infected patients, naive of treatment and its expression in the liver biopsies investigated by immunohistochemistry. We also analysed the ability of IL-26 to modulate the activity of natural killer (NK) cells, which control HCV infection. RESULTS: The serum levels of IL-26 are enhanced in chronically HCV-infected patients, mainly in those with severe liver inflammation. Immunohistochemistry reveals an intense IL-26 staining in liver lesions, mainly in infiltrating CD3+ cells. We also show that NK cells from healthy subjects and from HCV-infected patients are sensitive to IL-26. IL-26 upregulates membrane tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) expression on CD16- CD56(bright) NK cells, enabling them to kill HCV-infected hepatoma cells, with the same efficacy as interferon (IFN)-α-treated NK cells. IL-26 also induces the expression of the antiviral cytokines IFN-ß and IFN-γ, and of the proinflammatory cytokines IL-1ß and TNF-α by NK cells. CONCLUSIONS: This study highlights IL-26 as a new player in the inflammatory and antiviral immune responses associated with chronic HCV infection.


Assuntos
Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/imunologia , Interferon-alfa/uso terapêutico , Interleucinas/sangue , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Antivirais/uso terapêutico , Biomarcadores/sangue , Biópsia por Agulha , Antígeno CD56/imunologia , Antígeno CD56/metabolismo , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/imunologia , Citocinas/metabolismo , Feminino , Hepatite C Crônica/sangue , Humanos , Imuno-Histoquímica , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Masculino , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Índice de Gravidade de Doença , Estatísticas não Paramétricas
10.
J Neuroimmunol ; 267(1-2): 35-42, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24369298

RESUMO

Using brain lymphoma model, we demonstrate that immunotherapy combining Treg depletion (using anti-CD25 mAb PC61) followed by intracranial CpG-ODN administration induced tumor rejection in all treated mice and led to the establishment of a memory antitumor immune response in 60% of them. This protective effect was associated with a recruitment of NK cells and, to a lesser extent, of dendritic cells, B cells and T lymphocytes. NK cell depletion abolished the protective effect of the treatment, confirming a major role of NK cells in brain tumor elimination. Each treatment used alone failed to protect brain tumor bearing mice, revealing the therapeutic benefit of combining Treg depletion and local CpG-ODN injection.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Linfoma/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Linfócitos T Reguladores/fisiologia , Animais , Anticorpos/toxicidade , Antígenos Ly/imunologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-2/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/fisiologia , Linfoma/complicações , Linfoma/metabolismo , Linfoma/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Transplante de Neoplasias , Linfócitos T Reguladores/efeitos dos fármacos , Fatores de Tempo , Receptor Toll-Like 9/metabolismo
11.
J Immunol ; 191(4): 1873-82, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23863905

RESUMO

Newborns and infants present a higher susceptibility to infection than adults, a vulnerability associated with deficiencies in both the innate and adaptive immune systems. Innate immune receptors are sensors involved in the recognition and elimination of microbes that play a pivotal role at the interface between innate and adaptive immunity. Pentraxin 3 (PTX3), the prototypic long pentraxin, is a soluble pattern recognition receptor involved in the initiation of protective responses against selected pathogens. Because neonates are generally resistant to these pathogens, we suspected that PTX3 may be provided by a maternal source during the early life times. We observed that human colostrum contains high levels of PTX3, and that mammary epithelial cell and CD11b(+) milk cells constitutively produce PTX3. Interestingly, PTX3 given orally to neonate mice was rapidly distributed in different organs, and PTX3 ingested during lactation was detected in neonates. Finally, we observed that orally administered PTX3 provided protection against Pseudomonas aeruginosa lung infection in neonate mice. Therefore, breastfeeding constitutes, during the early life times, an important source of PTX3, which actively participates in the protection of neonates against infections. In addition, these results suggest that PTX3 might represent a therapeutic tool for treating neonatal infections and support the view that breastfeeding has beneficial effects on the neonates' health.


Assuntos
Aleitamento Materno , Proteína C-Reativa/fisiologia , Colostro/química , Recém-Nascido/imunologia , Leite Humano/química , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Componente Amiloide P Sérico/fisiologia , Administração Oral , Adulto , Animais , Animais Recém-Nascidos , Mama/citologia , Proteína C-Reativa/administração & dosagem , Proteína C-Reativa/análise , Proteína C-Reativa/biossíntese , Proteína C-Reativa/farmacocinética , Antígeno CD11b/análise , Linhagem Celular , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Endotoxinas/farmacologia , Endotoxinas/toxicidade , Células Epiteliais/metabolismo , Feminino , Humanos , Lactação , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Leite Humano/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Proteínas do Tecido Nervoso/biossíntese , Componente Amiloide P Sérico/administração & dosagem , Componente Amiloide P Sérico/análise , Componente Amiloide P Sérico/farmacocinética , Organismos Livres de Patógenos Específicos , Distribuição Tecidual
12.
Eur J Immunol ; 39(10): 2877-84, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19728309

RESUMO

NK lymphocytes and type I IFN (IFN-alpha/beta) are major actors of the innate anti-viral response that also influence adaptive immune responses. We evaluated type I IFN production by human NK cells in response to polyI:C, a potent type I IFN-inducing TLR3 agonist. PolyI:C plus IL-2/IL-12 induced IFN-beta (but not IFN-alpha) mRNA expression and protein production by highly pure human NK cells and by the human NK cell line NK92. Neutralizing anti-IFNAR1 or anti-IFN-beta Ab prevented the production of IFN-gamma induced by polyI:C plus IL-2/IL-12. Similarly, IFN-gamma production induced by polyI:C plus IL-12 was reduced in NK cells isolated from IFNAR1(-/-) compared with WT mice. The ability of polyI:C plus IL-12 to induce IFN-gamma production was related to an increase of TLR3, Mda5 and IFNAR expression and by an increase of STAT1 and STAT4 phosphorylation. Collectively, these data demonstrate that NK cells, in response to polyI:C plus IL-2/IL-12, produce IFN-beta that induce, in an autocrine manner, the production of IFN-gamma and thereby highlight that NK cells may control the outcome of protective or injurious immune responses through type I IFN secretion.


Assuntos
Comunicação Autócrina/imunologia , Interferon beta/metabolismo , Interferon gama/metabolismo , Interleucina-12/farmacologia , Interleucina-2/farmacologia , Células Matadoras Naturais/metabolismo , Poli I-C/farmacologia , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Linhagem Celular , Células Cultivadas , RNA Helicases DEAD-box/genética , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Humanos , Helicase IFIH1 Induzida por Interferon , Interferon beta/genética , Interferon beta/imunologia , Interferon beta/farmacologia , Interferon gama/genética , Células Matadoras Naturais/efeitos dos fármacos , Cinética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptores de Interleucina-12/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT4/metabolismo , Receptor 3 Toll-Like/genética
13.
J Biol Chem ; 284(35): 23187-96, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19561082

RESUMO

Mycobacterium tuberculosis modulates host immune responses through proteins and complex glycolipids. Here, we report that the glycosylphosphatidylinositol anchor phosphatidyl-myo-inositol hexamannosides PIM(6) or PIM(2) exert potent anti-inflammatory activities. PIM strongly inhibited the Toll-like receptor (TLR4) and myeloid differentiation protein 88 (MyD88)-mediated release of NO, cytokines, and chemokines, including tumor necrosis factor (TNF), interleukin 12 (IL-12) p40, IL-6, keratinocyte-derived chemokine, and also IL-10 by lipopolysaccharide (LPS)-activated macrophages. This effect was independent of the presence of TLR2. PIM also reduced the LPS-induced MyD88-independent, TIR domain-containing adaptor protein inducing interferon beta (TRIF)-mediated expression of co-stimulatory receptors. PIM inhibited LPS/TLR4-induced NFkappaB translocation. Synthetic PIM(1) and a PIM(2) mimetic recapitulated these in vitro activities and inhibited endotoxin-induced airway inflammation, TNF and keratinocyte-derived chemokine secretion, and neutrophil recruitment in vivo. Mannosyl, two acyl chains, and phosphatidyl residues are essential for PIM anti-inflammatory activity, whereas the inosityl moiety is dispensable. Therefore, PIM exert potent antiinflammatory effects both in vitro and in vivo that may contribute to the strategy developed by mycobacteria for repressing the host innate immunity, and synthetic PIM analogs represent powerful anti-inflammatory leads.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/imunologia , Citocinas/imunologia , Regulação para Baixo , Fator 88 de Diferenciação Mieloide/imunologia , Fosfatidilinositóis/imunologia , Receptor 4 Toll-Like/imunologia , Tuberculose/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Células Cultivadas , Citocinas/genética , Expressão Gênica , Humanos , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis/imunologia , Fator 88 de Diferenciação Mieloide/genética , Receptor 4 Toll-Like/genética , Tuberculose/genética , Tuberculose/microbiologia
14.
J Invest Dermatol ; 129(3): 671-81, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18843289

RESUMO

Carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1) is a cell-surface glycoprotein, belonging to the carcinoembryonic antigen family, expressed by human neutrophils, epithelial cells, activated T and NK cells. CEACAM1 is expressed as a cell-surface molecule with different isoforms or can be secreted as a soluble protein. Here, we show that keratinocytes in the outer epidermal layer of psoriatic skin express CEACAM1, unlike those in healthy skin or in cutaneous lesions of patients with atopic or nummular dermatitis. Stimulation of primary human keratinocytes or in vitro reconstituted epidermis with culture supernatants of activated psoriatic lesion-infiltrating T cells, IFN-gamma or oncostatin M, but not IL-17, induced the expression of transcripts for the CEACAM1-long and -short isoforms and cell-surface CEACAM1, whereas soluble CEACAM1 was not produced. The uppermost layers of the epidermis in psoriatic lesions also contain neutrophils, a cell type with inflammatory and antimicrobial properties. Coculture of CEACAM1-expressing keratinocytes or CHO transfectants with neutrophils delayed spontaneous apoptosis of the latter cells. These results show that cytokine-induced cell-surface expression of CEACAM1 by keratinocytes in the context of a psoriatic environment might contribute to the persistence of neutrophils and thus to ongoing inflammation and the decreased propensity for skin infection, typical for patients with psoriasis.


Assuntos
Antígenos CD/metabolismo , Antígeno Carcinoembrionário/metabolismo , Moléculas de Adesão Celular/metabolismo , Queratinócitos/metabolismo , Neutrófilos/metabolismo , Psoríase/metabolismo , Pele/patologia , Animais , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Oncostatina M/metabolismo , Linfócitos T/metabolismo
15.
Immunology ; 117(4): 507-16, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16556265

RESUMO

Effector memory T helper 2 (Th2) cells that accumulate in target organs (i.e. skin or bronchial mucosa) have a central role in the pathogenesis of allergic disorders. To date, the factors that selectively trigger local production of Th2-attracting chemokines remain poorly understood. In mucosa, at the sites of allergen entry, immature dendritic cells (DC) are in close contact with mast cells. Histamine and prostaglandin E2 (PGE2) are two mediators released by allergen-activated mast cells that favour the polarization of maturing DC into Th2-polarizing cells. We analysed here the effects of histamine and PGE2 on the prototypic, Th2-(CCL17, CCL22) versus Th1-(CXCL10) chemokine production by human DC. We report that histamine and PGE2 dose-dependently up-regulate CCL17 and CCL22 by monocyte-derived immature DC. These effects were potentiated by tumour necrosis factor-alpha, still observed in the presence of the Th1-cytokine interferon-gamma (IFN-gamma) and abolished by the immunomodulatory cytokine interleukin-10. In addition, histamine and PGE2 down-regulated IFN-gamma-induced CXCL10 production by monocyte-derived DC. These properties of histamine and PGE2 were observed at the transcriptional level and were mediated mainly through H2 receptors for histamine and through EP2 and EP4 receptors for PGE2. Finally, histamine and PGE2 also up-regulated CCL17 and CCL22 and decreased IFN-gamma-induced CXCL10 production by purified human myeloid DC. In conclusion, these data show that, in addition to polarizing DC into mature cells that promote naïve T-cell differentiation into Th2 cells, histamine and PGE2 may act on immature DC to trigger local Th2 cell recruitment through a selective control of Th1/Th2-attracting chemokine production, thereby contributing to maintain a microenvironment favourable to persistent immunoglobulin E synthesis.


Assuntos
Quimiocinas/biossíntese , Células Dendríticas/imunologia , Histamina/imunologia , Prostaglandinas E/imunologia , Células Th2/imunologia , Células Cultivadas , Quimiocina CCL17 , Quimiocina CCL22 , Quimiocina CXCL10 , Quimiocinas/genética , Quimiocinas CC/biossíntese , Quimiocinas CC/genética , Quimiocinas CXC/biossíntese , Quimiocinas CXC/genética , Regulação para Baixo/imunologia , Sinergismo Farmacológico , Humanos , Interferon gama/antagonistas & inibidores , Interferon gama/imunologia , RNA Mensageiro/genética , Receptores Histamínicos H2/imunologia , Receptores de Prostaglandina E/imunologia , Receptores de Prostaglandina E Subtipo EP2 , Receptores de Prostaglandina E Subtipo EP4 , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Fator de Necrose Tumoral alfa/imunologia , Regulação para Cima/imunologia
16.
BMC Biochem ; 3: 21, 2002 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-12149129

RESUMO

BACKGROUND: Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate insecticides allowing its use for residue detection with biosensors. Drosophila acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro mutagenesis. However, it is not sufficiently stable for extensive utilization. It is a homodimer in which both subunits contain 8 cysteine residues. Six are involved in conserved intramolecular disulfide bridges and one is involved in an interchain disulfide bridge. The 8th cysteine is not conserved and is present at position 290 as a free thiol pointing toward the center of the protein. RESULTS: The free cysteine has been mutated to valine and the resulting protein has been assayed for stability using various denaturing agents: temperature, urea, acetonitrile, freezing, proteases and spontaneous-denaturation at room temperature. It was found that the C290V mutation rendered the protein 1.1 to 2.7 fold more stable depending on the denaturing agent. CONCLUSION: It seems that stabilization resulting from the cysteine to valine mutation originates from a decrease of thiol-disulfide interchanges and from an increase in the hydrophobicity of the buried side chain.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Cisteína/química , Drosophila melanogaster/enzimologia , Acetilcolinesterase/genética , Animais , Cisteína/genética , Estabilidade Enzimática , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutagênese , Desnaturação Proteica , Valina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA