Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(11)2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37296659

RESUMO

Cardiomyopathy has become one of the leading causes of death in patients with Duchenne muscular dystrophy (DMD). We recently reported that the inhibition of the interaction between the receptor activator of nuclear factor κB ligand (RANKL) and receptor activator of nuclear factor κB (RANK) significantly improves muscle and bone functions in dystrophin-deficient mdx mice. RANKL and RANK are also expressed in cardiac muscle. Here, we investigate whether anti-RANKL treatment prevents cardiac hypertrophy and dysfunction in dystrophic mdx mice. Anti-RANKL treatment significantly reduced LV hypertrophy and heart mass, and maintained cardiac function in mdx mice. Anti-RANKL treatment also inhibited NFκB and PI3K, two mediators implicated in cardiac hypertrophy. Furthermore, anti-RANKL treatment increased SERCA activity and the expression of RyR, FKBP12, and SERCA2a, leading possibly to an improved Ca2+ homeostasis in dystrophic hearts. Interestingly, preliminary post hoc analyses suggest that denosumab, a human anti-RANKL, reduced left ventricular hypertrophy in two patients with DMD. Taken together, our results indicate that anti-RANKL treatment prevents the worsening of cardiac hypertrophy in mdx mice and could potentially maintain cardiac function in teenage or adult patients with DMD.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Adulto , Animais , Adolescente , Humanos , Criança , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Ligante RANK/metabolismo , Miocárdio/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo
2.
Front Physiol ; 13: 1032450, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505042

RESUMO

Skeletal muscle makes up almost half the body weight of heathy individuals and is involved in several vital functions, including breathing, thermogenesis, metabolism, and locomotion. Skeletal muscle exhibits enormous plasticity with its capacity to adapt to stimuli such as changes in mechanical loading, nutritional interventions, or environmental factors (oxidative stress, inflammation, and endocrine changes). Satellite cells and timely recruited inflammatory cells are key actors in muscle homeostasis, injury, and repair processes. Conversely, uncontrolled recruitment of inflammatory cells or chronic inflammatory processes leads to muscle atrophy, fibrosis and, ultimately, impairment of muscle function. Muscle atrophy and loss of function are reported to occur either in physiological situations such as aging, cast immobilization, and prolonged bed rest, as well as in many pathological situations, including cancers, muscular dystrophies, and several other chronic illnesses. In this review, we highlight recent discoveries with respect to the molecular mechanisms leading to muscle atrophy caused by modified mechanical loading, aging, and diseases. We also summarize current perspectives suggesting that the inflammatory process in muscle homeostasis and repair is a double-edged sword. Lastly, we review recent therapeutic approaches for treating muscle wasting disorders, with a focus on the RANK/RANKL/OPG pathway and its involvement in muscle inflammation, protection and regeneration processes.

3.
Front Cell Dev Biol ; 10: 903657, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693934

RESUMO

Although their physiology and functions are very different, bones, skeletal and smooth muscles, as well as the heart have the same embryonic origin. Skeletal muscles and bones interact with each other to enable breathing, kinesis, and the maintenance of posture. Often, muscle and bone tissues degenerate synchronously under various conditions such as cancers, space travel, aging, prolonged bed rest, and neuromuscular diseases. In addition, bone tissue, skeletal and smooth muscles, and the heart share common signaling pathways. The RANK/RANKL/OPG pathway, which is essential for bone homeostasis, is also implicated in various physiological processes such as sarcopenia, atherosclerosis, and cardiovascular diseases. Several studies have reported bone-skeletal muscle crosstalk through the RANK/RANKL/OPG pathway. This review will summarize the current evidence indicating that the RANK/RANKL/OPG pathway is involved in muscle function. First, we will briefly discuss the role this pathway plays in bone homeostasis. Then, we will present results from various sources indicating that it plays a physiopathological role in skeletal, smooth muscle, and cardiac functions. Understanding how the RANK/RANKL/OPG pathway interferes in several physiological disorders may lead to new therapeutic approaches aimed at protecting bones and other tissues with a single treatment.

4.
Ann Epidemiol ; 67: 35-42, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34906634

RESUMO

PURPOSE: The aim of this study was to check if self-reported smoking is still associated with back pain above and beyond its association with cotinine, to test the hypothesis that the association of self-reported cigarette smoking with back pain is due to residual confounding. METHODS: Secondary analyses of population-based cross-sectional data pertaining to 4470 adults were conducted. In multivariate analyses examining the associations of self-reported smoking with several spinal pain outcomes (neck pain, low back pain, low back pain with pain below knee, self-reported diagnosis of arthritis/rheumatism, and related limitations), further adjustment for serum cotinine concentrations was made. RESULTS: Self-reported cigarette smoking was associated with neck pain (adjusted Odds Ratio (aOR) Regular smokers vs. Non-smokers: 1.44; 95% Confidence Interval (CI): 1.14-1.82), low back pain (aOR: 1.48; 95% CI: 1.24-1.78), low back pain with pain below knee (aOR: 1.98; 95% CI: 1.42-2.76), as well as arthritis/rheumatism (aOR: 1.33; 95% CI: 1.03-1.71), and related functional limitations (P < .05). Further adjustment for serum cotinine concentrations brought about little change in the ORs or beta coefficients. CONCLUSIONS: These results do not support the hypothesis that serum cotinine concentrations explain the well-known relationship between cigarette smoking and spinal pain.


Assuntos
Artrite , Fumar Cigarros , Dor Lombar , Doenças Reumáticas , Adulto , Dor nas Costas , Fumar Cigarros/efeitos adversos , Fumar Cigarros/epidemiologia , Cotinina , Estudos Transversais , Humanos , Dor Lombar/epidemiologia , Dor Lombar/etiologia , Cervicalgia/epidemiologia , Cervicalgia/etiologia , Autorrelato
5.
Mol Ther Methods Clin Dev ; 21: 559-573, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-33997104

RESUMO

Although receptor-activator of nuclear factor κB (RANK), its ligand RANKL, and osteoprotegerin (OPG), which are members of the tumor necrosis factor (TNF) superfamily, were first discovered in bone cells, they are also expressed in other cells, including skeletal muscle. We previously showed that the RANK/RANKL/OPG pathway is involved in the physiopathology of Duchenne muscular dystrophy and that a mouse full-length OPG-Fc (mFL-OPG-Fc) treatment is superior to muscle-specific RANK deletion in protecting dystrophic muscles. Although mFL-OPG-Fc has a beneficial effect in the context of muscular dystrophy, the function of human FL-OPG-Fc (hFL-OPG-Fc) during muscle repair is not yet known. In the present study, we investigated the impacts of an hFL-OPG-Fc treatment following the intramuscular injection of cardiotoxin (CTX). We show that a 7-day hFL-OPG-Fc treatment improved force production of soleus muscle. hFL-OPG-Fc also improved soleus muscle integrity and regeneration by increasing satellite cell density and fiber cross-sectional area, attenuating neutrophil inflammatory cell infiltration at 3 and 7 days post-CTX injury, increasing the anti-inflammatory M2 macrophages 7 days post-CTX injury. hFL-OPG-Fc treatment also favored M2 over M1 macrophage phenotypic polarization in vitro. We show for the first time that hFL-OPG-Fc improved myotube maturation and fusion in vitro and reduced cytotoxicity and cell apoptosis. These findings demonstrate that hFL-OPG-Fc has therapeutic potential for muscle diseases in which repair and regeneration are impaired.

6.
Hum Mol Genet ; 29(3): 483-494, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943048

RESUMO

Bone and muscle are tightly coupled and form a functional unit under normal conditions. The receptor-activator of nuclear factor κB/receptor-activator of nuclear factor κB ligand/osteoprotegerin (RANK/RANKL/OPG) triad plays a crucial role in bone remodeling. RANKL inhibition by OPG prevents osteoporosis. In contrast, the absence of OPG results in elevated serum RANKL and early onset osteoporosis. However, the impacts of OPG deletion on muscle structure and function are unknown. Our results showed that 1-, 3- and 5-month-old Opg-/- mice have reduced tibial and femoral bone biomechanical properties and higher levels of circulating RANKL. OPG-deficient mice displayed reduced locomotor activity and signs of muscle weakness at 5 months of age. Furthermore, OPG deficiency did not affect the skeletal muscles in 1- and 3-month-old mice. However, it impaired fast-twitch EDL but not slow-twitch Sol muscles in 5-month-old Opg-/- mice. Moreover, 5-month-old Opg-/- mice exhibited selective atrophy of fast-twitch-type IIb myofibers, with increased expression of atrophic proteins such as NF-kB, atrogin-1 and MuRF-1. We used an in vitro model to show that RANKL-stimulated C2C12 myotubes significantly increased the expression of NF-kB, atrogin-1 and MuRF-1. A 2-month anti-RANKL treatment starting at 3 months of age in Opg-/- mice improved voluntary activity, the ex vivo maximum specific force (sP0) of EDL muscles, and whole limb grip force performance and rescued the biomechanical properties of bone. In conclusion, the deletion of OPG and the disruption of the RANKL/OPG balance induced osteoporosis as well as the selective weakness and atrophy of the powerful fast-twitch IIb myofibers, which was partly alleviated by an anti-RANKL treatment.


Assuntos
Debilidade Muscular/patologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Osteoprotegerina/fisiologia , Animais , Remodelação Óssea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Ligante RANK/metabolismo
7.
Hum Mol Genet ; 28(18): 3101-3112, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31179501

RESUMO

Duchenne muscular dystrophy (DMD) is the most severe form of muscular dystrophy which leads to progressive muscle degeneration and inflammation. The receptor activator of nuclear factor NF-κB ligand (RANKL) and its receptor (RANK), which are expressed in bone and skeletal and cardiac muscles, form a signaling network upstream from nuclear factor-kappa B (NF-κB). We thus hypothesized that prolonged silencing RANKL/RANK signaling would significantly improve DMD. We showed that RANK and RANKL protein levels were increased in the microenvironment of myofibers of 5-month-old utrophin haploinsufficient mdx (mdx/utrn+/-) mice and that a 4 mg/kg dose of anti-RANKL antibody every 3 d for 28 days is optimal and more effective than 1 mg/kg every 3 d for improving the ex vivo maximum specific force (sP0) of dystrophic EDL muscles from mdx/utrn+/- mice. This functional improvement was associated with a reduction in muscle edema, damage, and fibrosis and a marked reduction in serum CK levels. The anti-RANKL treatment inhibited the NF-κB pathway, increased the proportion of anti-inflammatory and non-cytotoxic M2 macrophages, and reduced the number of centrally-nucleated myofibers and the frequency of small myofibers, suggesting that anti-RANKL inhibits the cycle of degeneration/regeneration in dystrophic mice. A three-point bending test showed that a 28-d anti-RANKL treatment increases the mechanical properties of bone in mdx/utrn+/- dystrophic mice. In conclusion, the anti-RANKL treatment protected against skeletal muscle dysfunctions while enhancing bone mechanical properties, filling two needs with one deed in the context of muscular dystrophy.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miosite/metabolismo , Ligante RANK/antagonistas & inibidores , Animais , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais/farmacologia , Microambiente Celular , Modelos Animais de Doenças , Fibrose , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares , Miosite/tratamento farmacológico , Miosite/etiologia , Miosite/patologia , NF-kappa B/metabolismo , Fenótipo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Curr Osteoporos Rep ; 16(5): 541-553, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30225627

RESUMO

PURPOSE OF REVIEW: In Duchenne muscular dystrophy (DMD), the progressive skeletal and cardiac muscle dysfunction and degeneration is accompanied by low bone mineral density and bone fragility. Glucocorticoids, which remain the standard of care for patients with DMD, increase the risk of developing osteoporosis. The scope of this review emphasizes the mutual cohesion and common signaling pathways between bone and skeletal muscle in DMD. RECENT FINDINGS: The muscle-bone interactions involve bone-derived osteokines, muscle-derived myokines, and dual-origin cytokines that trigger common signaling pathways leading to fibrosis, inflammation, or protein synthesis/degradation. In particular, the triad RANK/RANKL/OPG including receptor activator of NF-kB (RANK), its ligand (RANKL), along with osteoprotegerin (OPG), regulates bone matrix modeling and remodeling pathways and contributes to muscle pathophysiology in DMD. This review discusses the importance of the muscle-bone unit in DMD and covers recent research aimed at determining the muscle-bone interactions that may eventually lead to the development of multifunctional and effective drugs for treating muscle and bone disorders regardless of the underlying genetic mutations in DMD.


Assuntos
Osso e Ossos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Osteoporose/metabolismo , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Remodelação Óssea , Osso e Ossos/patologia , Citocinas/metabolismo , Fibrose , Humanos , Distrofia Muscular de Duchenne/complicações , Osteoporose/complicações , Transdução de Sinais
9.
J Bone Miner Res ; 33(11): 2007-2020, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29989666

RESUMO

Fanconi anemia (FA) is a rare genetic disorder associated with a progressive decline in hematopoietic stem cells leading to bone marrow failure. FA is also characterized by a variety of developmental defects including short stature and skeletal malformations. More than half of children affected with FA have radial-ray abnormalities, and many patients have early onset osteopenia/osteoporosis. Although many Fanconi anemia genes have been identified and a molecular pathway defined, the underlying mechanism leading to bone defects remains elusive. To understand the role of FA genes in skeletal development and bone microarchitecture, we evaluated bone physiology during embryogenesis and in adult FancA- and FancC-deficient mice. We found that both FancA-/- and FancC-/- embryos have abnormal skeletal development shown by skeletal malformations, growth delay, and reduced bone mineralization. FancC-/- adult mice present altered bone morphology and microarchitecture with a significant decrease in cortical bone mineral density in a sex-specific manner. Mechanical testing revealed that male but not female FancC-/- mice show reduced bone strength compared with their wild-type littermates. Ex vivo cultures showed that FancA-/- and FancC-/- bone marrow-derived mesenchymal stem cells (BM MSC) have impaired differentiation capabilities together with altered gene expression profiles. Our results suggest that defective bone physiology in FA occurs in utero and possibly results from altered BM MSC function. These results provide valuable insights into the mechanism involved in FA skeletal defects. © 2018 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/anormalidades , Osso e Ossos/fisiopatologia , Calcificação Fisiológica , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Deleção de Genes , Animais , Osso e Ossos/patologia , Diferenciação Celular , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/patologia , Proteína do Grupo de Complementação A da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação C da Anemia de Fanconi/deficiência , Feminino , Regulação da Expressão Gênica , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Crânio/embriologia , Coluna Vertebral/embriologia
10.
Acta Neuropathol Commun ; 6(1): 31, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29699580

RESUMO

Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that regulates synchronously bone and skeletal muscle physiopathology is still elusive. Receptor-activator of nuclear factor κB (RANK), its ligand RANKL and the soluble decoy receptor osteoprotegerin (OPG) are the key regulators of osteoclast differentiation and bone remodelling. We thus hypothesized that RANK/RANKL/OPG, which is a key pathway for bone regulation, is involved in Duchenne muscular dystrophy (DMD) physiopathology. Our results show that muscle-specific RANK deletion (mdx-RANK mko ) in dystrophin deficient mdx mice improves significantly specific force [54% gain in force] of EDL muscles with no protective effect against eccentric contraction-induced muscle dysfunction. In contrast, full-length OPG-Fc injections restore the force of dystrophic EDL muscles [162% gain in force], protect against eccentric contraction-induced muscle dysfunction ex vivo and significantly improve functional performance on downhill treadmill and post-exercise physical activity. Since OPG serves a soluble receptor for RANKL and as a decoy receptor for TRAIL, mdx mice were injected with anti-RANKL and anti-TRAIL antibodies to decipher the dual function of OPG. Injections of anti-RANKL and/or anti-TRAIL increase significantly the force of dystrophic EDL muscle [45% and 17% gains in force, respectively]. In agreement, truncated OPG-Fc that contains only RANKL domains produces similar gains, in terms of force production, than anti-RANKL treatments. To corroborate that full-length OPG-Fc also acts independently of RANK/RANKL pathway, dystrophin/RANK double-deficient mice were treated with full-length OPG-Fc for 10 days. Dystrophic EDL muscles exhibited a significant gain in force relative to untreated dystrophin/RANK double-deficient mice, indicating that the effect of full-length OPG-Fc is in part independent of the RANKL/RANK interaction. The sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) activity is significantly depressed in dysfunctional and dystrophic muscles and full-length OPG-Fc treatment increased SERCA activity and SERCA-2a expression. These findings demonstrate the superiority of full-length OPG-Fc treatment relative to truncated OPG-Fc, anti-RANKL, anti-TRAIL or muscle RANK deletion in improving dystrophic muscle function, integrity and protection against eccentric contractions. In conclusion, full-length OPG-Fc represents an efficient alternative in the development of new treatments for muscular dystrophy in which a single therapeutic approach may be foreseeable to maintain both bone and skeletal muscle functions.


Assuntos
Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofias Musculares/terapia , Osteoprotegerina/uso terapêutico , Receptor Ativador de Fator Nuclear kappa-B/deficiência , Animais , Creatina Quinase/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Distrofias Musculares/genética , Osteoprotegerina/química , Osteoprotegerina/metabolismo , RNA Mensageiro/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
11.
Spine (Phila Pa 1976) ; 43(12): E712-E721, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29239908

RESUMO

STUDY DESIGN: A nationwide cross-sectional study. OBJECTIVES: To measure the associations between cigarette smoking (defined as serum cotinine concentration >15 ng/mL) and the 3-month prevalence of spinal pain (neck pain, low back pain, low back pain with pain below knee, and self-reported diagnosis of arthritis/rheumatism) and related limitations, and to verify whether these associations are mediated by serum concentrations of vitamin C. SUMMARY OF BACKGROUND DATA: Cigarette smoking has been consistently associated with back pain, but this association has never been explained. Because vitamin C has recently been reported to be associated with spinal pain and related functional limitations, and the metabolism of vitamin C differs between smokers and nonsmokers, we hypothesized that the prevalence of spinal pain and related limitations might be greater among smokers because they are more susceptible to be in a state of hypovitaminosis C. METHODS: We conducted secondary analyses of National Health and Nutrition Examination Survey (NHANES) 2003 to 2004 data on 4438 individuals aged ≥20 years. RESULTS: Serum concentrations of vitamin C and cotinine were strongly and inversely correlated (r = -0.35, P < 0.0001). Smoking was statistically associated with the prevalence of neck pain [adjusted odds ratio: aOR: 1.25; 95% confidence interval (95% CI): 1.06-1.47], low back pain (aOR: 1.20; 95% CI: 1.04-1.39), and low back pain with pain below knee (aOR: 1.58; 95% CI: 1.13-2.22) and related limitations, with a dose-response relationship (P < 0.05). However, the associations between smoking and spinal pain were not mediated by concentrations of vitamin C. CONCLUSION: These results confirm the relationship between smoking and spinal pain, but they do not support a mediating effect of vitamin C on this relationship. LEVEL OF EVIDENCE: 2.


Assuntos
Deficiência de Ácido Ascórbico/complicações , Ácido Ascórbico/sangue , Dor nas Costas/epidemiologia , Fumar Cigarros/efeitos adversos , Cervicalgia/epidemiologia , Adulto , Deficiência de Ácido Ascórbico/sangue , Deficiência de Ácido Ascórbico/epidemiologia , Dor nas Costas/sangue , Dor nas Costas/etiologia , Fumar Cigarros/sangue , Fumar Cigarros/epidemiologia , Cotinina/sangue , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cervicalgia/etiologia , Inquéritos Nutricionais , Prevalência
12.
Am J Pathol ; 187(3): 498-504, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28041995

RESUMO

Our recent work showed that daily injections of osteoprotegerin (OPG)-immunoglobulin fragment complex (OPG-Fc) completely restore the function of fast-twitch extensor digitorum longus muscles in dystrophic mdx mice, a murine model of Duchenne muscular dystrophy. However, despite marked improvements, OPG-Fc was not as effective in preventing the loss of function of slow-twitch soleus and diaphragm muscles. Because ß2-agonists enhance the function of slow- and fast-twitch dystrophic muscles and because their use is limited by their adverse effects on bone and cardiac tissues, we hypothesized that OPG-Fc, a bone and skeletal muscle protector, acts synergistically with ß2-agonists and potentiates their positive effects on skeletal muscles. We observed that the content of ß2-adrenergic receptors, which are mainly expressed in skeletal muscle, is significantly reduced in dystrophic muscles but is rescued by the injection of OPG-Fc. Most important, OPG-Fc combined with a low dose of formoterol, a member of a new generation of ß2-agonists, histologically and functionally rescued slow-twitch dystrophic muscles. This combination of therapeutic agents, which have already been tested and approved for human use, may open up new therapeutic avenues for Duchenne muscular dystrophy and possibly other neuromuscular diseases.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Osteoprotegerina/uso terapêutico , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Fumarato de Formoterol/farmacologia , Fumarato de Formoterol/uso terapêutico , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular Animal/patologia , Osteoprotegerina/farmacologia , Receptores Fc/metabolismo
13.
Med Sci (Paris) ; 32(6-7): 591-7, 2016.
Artigo em Francês | MEDLINE | ID: mdl-27406769

RESUMO

Muscle injuries are very frequent and are associated with an inflammatory reaction that varies in intensity. Classically the inflammatory process was considered harmful for muscle regeneration and anti-inflammatory agents are still part of a conventional therapy. Over the last decades, it has been demonstrated under some conditions that the inflammatory response could be detrimental for the musculoskeletal tissue. However, accumulating evidence indicate that controlled and efficient inflammatory response is necessary for an optimal muscle recovery. Among the resident and infiltrating leukocytes that participate into the inflammatory process, macrophages play a critical role in muscle regeneration due to their ability to switch from pro-inflammatory to anti-inflammatory phenotypes depending on their microenvironment. The present review synthesizes the recent advances regarding the interactions of the different infiltrating and resident leukocytes on myogenic cell function and muscle regeneration.


Assuntos
Inflamação/fisiopatologia , Músculo Esquelético/fisiologia , Doenças Musculares/etiologia , Regeneração/fisiologia , Animais , Anti-Inflamatórios/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Desenvolvimento Muscular/fisiologia , Doenças Musculares/imunologia
14.
Am J Physiol Cell Physiol ; 310(8): C663-72, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26825123

RESUMO

Receptor-activator of nuclear factor-κB (RANK), its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Here we show that RANK is also expressed in fully differentiated myotubes and skeletal muscle. Muscle RANK deletion has inotropic effects in denervated, but not in sham, extensor digitorum longus (EDL) muscles preventing the loss of maximum specific force while promoting muscle atrophy, fatigability, and increased proportion of fast-twitch fibers. In denervated EDL muscles, RANK deletion markedly increased stromal interaction molecule 1 content, a Ca(2+)sensor, and altered activity of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) modulating Ca(2+)storage. Muscle RANK deletion had no significant effects on the sham or denervated slow-twitch soleus muscles. These data identify a novel role for RANK as a key regulator of Ca(2+)storage and SERCA activity, ultimately affecting denervated skeletal muscle function.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Contração Isométrica/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
PLoS One ; 10(9): e0137742, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26375471

RESUMO

OBJECTIVE: To evaluate whether a 12-week supervised exercise program promotes an active lifestyle throughout pregnancy in pregnant women with obesity. METHODS: In this preliminary randomised trial, pregnant women (body mass index ≥ 30 kg/m2) were allocated to either standard care or supervised training, from 15 to 27 weeks of gestation. Physical activity was measured by accelerometry at 14, 28 and 36 weeks, while fitness (oxygen consumption (VO2) at the anaerobic threshold), nutrition (caloric intake and macronutrients percentage) and anthropometry were assessed at 14 and 28 weeks of gestation. Analyses were performed using repeated measures ANOVA. RESULTS: A total of fifty (50) women were randomised, 25 in each group. There was no time-group interaction for time spent at moderate and vigorous activity (pinteraction = 0.064), but the exercise group's levels were higher than controls' at all times (pgroup effect = 0.014). A significant time-group interaction was found for daily physical activity (p = 0.023); similar at baseline ((22.0 ± 6.7 vs 21.8 ± 7.3) x 10(4) counts/day) the exercise group had higher levels than the control group following the intervention ((22.8 ± 8.3 vs 19.2 ± 4.5) x 10(4) counts/day, p = 0.020) and at 36 weeks of gestation ((19.2 ± 1.5 vs 14.9 ± 1.5) x 10(4) counts/day, p = 0.034). Exercisers also gained less weight than controls during the intervention period despite similar nutritional intakes (difference in weight change = -0.1 kg/week, 95% CI -0.2; -0.02, p = 0.016) and improved cardiorespiratory fitness (difference in fitness change = 8.1%, 95% CI 0.7; 9.5, p = 0.041). CONCLUSIONS: Compared with standard care, a supervised exercise program allows pregnant women with obesity to maintain fitness, limit weight gain and attenuate the decrease in physical activity levels observed in late pregnancy. TRIAL REGISTRATION: ClinicalTrials.gov NCT01610323.


Assuntos
Índice de Massa Corporal , Terapia por Exercício/métodos , Estilo de Vida , Obesidade/terapia , Adulto , Peso Corporal , Estudos de Casos e Controles , Ingestão de Energia , Feminino , Humanos , Obesidade/prevenção & controle , Consumo de Oxigênio , Gravidez , Resultado da Gravidez , Gestantes , Aumento de Peso
16.
Am J Pathol ; 185(4): 920-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25708645

RESUMO

Receptor-activator of NF-κB, its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology still is elusive. Here, we show that muscle cells can produce and secrete osteoprotegerin and pharmacologic treatment of dystrophic mdx mice with recombinant osteoprotegerin muscles. (Recombinant osteoprotegerin-Fc mitigates the loss of muscle force in a dose-dependent manner and preserves muscle integrity, particularly in fast-twitch extensor digitorum longus.) Our data identify osteoprotegerin as a novel protector of muscle integrity, and it potentially represents a new therapeutic avenue for both muscular diseases and osteoporosis.


Assuntos
Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/prevenção & controle , Osteoprotegerina/metabolismo , Animais , Linhagem Celular , Fragmentos Fc das Imunoglobulinas/metabolismo , Técnicas In Vitro , Inflamação/patologia , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculos/efeitos dos fármacos , Músculos/metabolismo , Músculos/patologia , Músculos/fisiopatologia , Distrofia Muscular Animal/fisiopatologia
17.
Nat Med ; 20(10): 1174-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25194569

RESUMO

Diminished regenerative capacity of skeletal muscle occurs during adulthood. We identified a reduction in the intrinsic capacity of mouse adult satellite cells to contribute to muscle regeneration and repopulation of the niche. Gene expression analysis identified higher expression of JAK-STAT signaling targets in 3-week [corrected] 18-month-old mice [corrected]. Knockdown of Jak2 or Stat3 significantly stimulated symmetric satellite stem cell divisions on cultured myofibers. Genetic knockdown of Jak2 or Stat3 expression in prospectively isolated satellite cells markedly enhanced their ability to repopulate the satellite cell niche after transplantation into regenerating tibialis anterior muscle. Pharmacological inhibition of Jak2 and Stat3 activity similarly stimulated symmetric expansion of satellite cells in vitro and their engraftment in vivo. Intramuscular injection of these drugs resulted in a marked enhancement of muscle repair and force generation after cardiotoxin injury. Together these results reveal age-related intrinsic properties that functionally distinguish satellite cells and suggest a promising therapeutic avenue for the treatment of muscle-wasting diseases.


Assuntos
Janus Quinases/antagonistas & inibidores , Fatores de Transcrição STAT/antagonistas & inibidores , Células Satélites de Músculo Esquelético/fisiologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Feminino , Técnicas de Silenciamento de Genes , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , RNA Interferente Pequeno/genética , Regeneração/efeitos dos fármacos , Regeneração/fisiologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Células Satélites de Músculo Esquelético/transplante , Transdução de Sinais
18.
J Biol Chem ; 289(41): 28629-39, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25160621

RESUMO

In this work, we report that Entpd1(-/-) mice, deficient for the ectonucleotidase nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), produce smaller litters (27% reduction) compared with wild-type C57BL6 animals. This deficit is linked to reduced in vivo oocyte fertilization by Entpd1(-/-) males (61 ± 11% versus 88 ± 7% for Entpd1(+/+)). Normal epididymal sperm count, spermatozoa morphology, capacitation, and motility and reduced ejaculated sperm number (2.4 ± 0.5 versus 3.7 ± 0.4 million for Entpd1(+/+)) pointed to vas deferens dysfunction. NTPDase1 was localized by immunofluorescence in the tunica muscularis of the vas deferens. Its absence resulted in a major ATP hydrolysis deficiency, as observed in situ by histochemistry and in primary smooth muscle cell cultures. In vitro, Entpd1(-/-) vas deferens displayed an exacerbated contraction to ATP, a diminished response to its non-hydrolysable analog αßMeATP, and a reduced contraction to electrical field stimulation, suggesting altered P2X1 receptor function with a propensity to desensitize. This functional alteration was accompanied by a 3-fold decrease in P2X1 protein expression in Entpd1(-/-) vas deferens with no variation in mRNA levels. Accordingly, exogenous nucleotidase activity was required to fully preserve P2X1 receptor activation by ATP in vitro. Our study demonstrates that NTPDase1 is required to maintain normal P2X1 receptor functionality in the vas deferens and that its absence leads to impaired peristalsis, reduced spermatozoa concentration in the semen, and, eventually, reduced fertility. This suggests that alteration of NTPDase1 activity affects ejaculation efficacy and male fertility. This work may contribute to unveil a cause of infertility and open new therapeutic potentials.


Assuntos
Antígenos CD/genética , Apirase/genética , Infertilidade Masculina/genética , Oligospermia/genética , Receptores Purinérgicos P2X1/genética , Espermatozoides/fisiologia , Ducto Deferente/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Apirase/deficiência , Ejaculação , Epididimo/enzimologia , Epididimo/fisiopatologia , Feminino , Regulação da Expressão Gênica , Infertilidade Masculina/enzimologia , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Contração Muscular , Músculo Liso/enzimologia , Músculo Liso/fisiopatologia , Oligospermia/enzimologia , Oligospermia/fisiopatologia , Oócitos/fisiologia , Receptores Purinérgicos P2X1/metabolismo , Capacitação Espermática , Ducto Deferente/fisiopatologia
19.
J Cell Biol ; 205(1): 97-111, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24711502

RESUMO

Wnt7a/Fzd7 signaling stimulates skeletal muscle growth and repair by inducing the symmetric expansion of satellite stem cells through the planar cell polarity pathway and by activating the Akt/mTOR growth pathway in muscle fibers. Here we describe a third level of activity where Wnt7a/Fzd7 increases the polarity and directional migration of mouse satellite cells and human myogenic progenitors through activation of Dvl2 and the small GTPase Rac1. Importantly, these effects can be exploited to potentiate the outcome of myogenic cell transplantation into dystrophic muscles. We observed that a short Wnt7a treatment markedly stimulated tissue dispersal and engraftment, leading to significantly improved muscle function. Moreover, myofibers at distal sites that fused with Wnt7a-treated cells were hypertrophic, suggesting that the transplanted cells deliver activated Wnt7a/Fzd7 signaling complexes to recipient myofibers. Taken together, we describe a viable and effective ex vivo cell modulation process that profoundly enhances the efficacy of stem cell therapy for skeletal muscle.


Assuntos
Movimento Celular , Força Muscular , Músculo Esquelético/cirurgia , Distrofias Musculares/cirurgia , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/transplante , Proteínas Wnt/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fusão Celular , Linhagem Celular , Polaridade Celular , Modelos Animais de Doenças , Proteínas Desgrenhadas , Endocitose , Receptores Frizzled/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipertrofia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Mioblastos Esqueléticos/patologia , Neuropeptídeos/metabolismo , Fator de Transcrição PAX7/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína Vermelha Fluorescente
20.
J Orthop Res ; 32(2): 279-85, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24307236

RESUMO

Macrophages are present in large numbers and display specific and distinct phenotypes during the various phases of tissue repair. However, their role following tendon injury and during repair has never been investigated. We injected C57BL/6 mice daily for 4 days with liposome-encapsulated clodronate to deplete circulating monocytes/macrophages. Placebo mice were injected with PBS. The left Achilles tendons of the mice were transversely sectioned and sutured using the 8-strand technique. Macrophage accumulation and cell proliferation were significantly lower in the tendons of clodronate-treated mice than in those of PBS-treated mice on days 3 and 7 post-injury. TGF-ß1 staining was significantly more intense in the tendons of PBS-treated mice on day 7 post-injury. Edema and the dry mass of the Achilles tendons were also higher in the PBS-treated mice on days 7 and 14 post-injury. No differences in absolute strength and stiffness were observed, but Young's modulus and maximal stress were significantly greater for tendons from the clodronate-treated mice than those from PBS-treated mice after 14 days of tendon repair. Overall, our findings showed that macrophages promote cell proliferation and extracellular matrix accumulation but their presence leads to inferior ultimate tensile strength of the Achilles tendons.


Assuntos
Tendão do Calcâneo/lesões , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Macrófagos/fisiologia , Resistência à Tração/fisiologia , Cicatrização/fisiologia , Animais , Ácido Clodrônico/farmacologia , Edema/etiologia , Módulo de Elasticidade/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA