Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1697: 45-52, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29902467

RESUMO

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the MECP2 gene. In the absence of MeCP2, expression of FXYD domain-containing transport regulator 1 (FXYD1) is deregulated in the frontal cortex (FC) of mice and humans. Because Fxyd1 is a membrane protein that controls cell excitability by modulating Na+, K+-ATPase activity (NKA), an excess of Fxyd1 may reduce NKA activity and contribute to the neuronal phenotype of Mecp2 deficient (KO) mice. To determine if Fxyd1 can rescue these RTT deficits, we studied the male progeny of Fxyd1 null males bred to heterozygous Mecp2 female mice. Maximal NKA enzymatic activity was not altered by the loss of MeCP2, but it increased in mice lacking one Fxyd1 allele, suggesting that NKA activity is under Fxyd1 inhibitory control. Deletion of one Fxyd1 allele also prevented the increased extracellular potassium (K+) accumulation observed in cerebro-cortical neurons from Mecp2 KO animals in response to the NKA inhibitor ouabain, and rescued the loss of dendritic arborization observed in FC neurons of Mecp2 KO mice. These effects were gene-dose dependent, because the absence of Fxyd1 failed to rescue the MeCP2-dependent deficits, and mimicked the effect of MeCP2 deficiency in wild-type animals. These results indicate that excess of Fxyd1 in the absence of MeCP2 results in deregulation of endogenous K+ conductances functionally associated with NKA and leads to stunted neuronal growth.


Assuntos
Proteínas de Membrana/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Plasticidade Neuronal/genética , Fosfoproteínas/metabolismo , Animais , Membrana Celular/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Homeostase , Masculino , Proteínas de Membrana/genética , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Fosfoproteínas/genética , Potássio/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo
2.
Proc Natl Acad Sci U S A ; 105(32): 11388-93, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18682558

RESUMO

Trafficking of AMPA subtype glutamate receptors (AMPARs) from intracellular compartments to synapses is thought to be a major mechanism underlying the expression of long-term potentiation (LTP), a cellular substrate for learning and memory. However, it remains unclear whether the AMPAR trafficking that takes place during LTP is due to a targeted insertion of AMPARs directly into the synapse or delivery to extrasynaptic sites followed by translocation into the synapse. Here, we provide direct physiological evidence that LTP induced by a theta-burst pairing and tetanic stimulation protocols causes the rapid delivery of AMPARs to a perisynaptic site. Perisynaptic AMPARs do not normally detect synaptically released glutamate but can do so when the glial glutamate transporter EAAT1 is inhibited. AMPARs can be detected at this perisynaptic site before, but not after, the full expression of LTP. The appearance of perisynaptic AMPARs requires postsynaptic exocytosis, PKA signaling, and the C-terminal region of GluR1 subunit of AMPARs but not actin polymerization. Actin polymerization after LTP induction is required to retain AMPARs at the perisynaptic site after their appearance. Low-frequency stimulation given shortly after LTP induction leads to activity-dependent removal of perisynaptic AMPARs and suppresses the subsequent expression of LTP. These results demonstrate that AMPARs are rapidly trafficked to perisynaptic sites shortly after LTP induction and suggest that the delivery and maintenance of perisynaptic AMPARs may serve as a checkpoint in the expression of LTP.


Assuntos
Aprendizagem/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/metabolismo , Sinapses/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transportador 1 de Aminoácido Excitatório/metabolismo , Exocitose/fisiologia , Transporte Proteico/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
3.
J Neurosci ; 28(22): 5740-51, 2008 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-18509035

RESUMO

Stable expression of long-term synaptic plasticity is critical for the developmental refinement of neural circuits and for some forms of learning and memory. Although structural remodeling of dendritic spines is associated with the stable expression of long-term potentiation (LTP), the relationship between structural and physiological plasticity remains unclear. To define whether these two processes are related or distinct, we simultaneously monitored EPSPs and dendritic spines, using combined patch-clamp recording and two-photon time-lapse imaging in the same CA1 pyramidal neurons in acute hippocampal slices. We found that theta burst stimulation paired with postsynaptic spiking, which reliably induced LTP, also induced a rapid and persistent expansion of dendritic spines. Like LTP, this expansion was NMDA receptor dependent. Spine expansion occurred even when LTP was inhibited by postsynaptic inhibition of exocytosis or PKA (protein kinase A); however, under these conditions, the spine expansion was unstable and collapsed spontaneously. Furthermore, similar changes in LTP and spine expansion were observed when hippocampal neurons were treated with protein synthesis inhibitors. Like LTP, spine expansion was reversed by low-frequency stimulation (LFS) via a phosphatase-dependent mechanism, but only if the LFS was applied in a critical time window after induction. These results indicate that the initial expression of LTP and spine expansion is dissociable, but there is a high degree of mechanistic overlap between the stabilization of structural plasticity and LTP.


Assuntos
Espinhas Dendríticas/fisiologia , Potenciação de Longa Duração/fisiologia , Células Piramidais/ultraestrutura , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Animais Recém-Nascidos , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Hipocampo/citologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/efeitos da radiação , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Inibição Neural/efeitos da radiação , Técnicas de Patch-Clamp/métodos , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Estatísticas não Paramétricas
4.
Hum Mol Genet ; 16(6): 640-50, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17309881

RESUMO

Rett syndrome (RTT) is an X-linked neurodevelopmental disorder linked to heterozygous de novo mutations in the MECP2 gene. MECP2 encodes methyl-CpG-binding protein 2 (MeCP2), which represses gene transcription by binding to 5-methylcytosine residues in symmetrically positioned CpG dinucleotides. Direct MeCP2 targets underlying RTT pathogenesis remain largely unknown. Here, we report that FXYD1, which encodes a transmembrane modulator of Na(+), K(+) -ATPase activity, is elevated in frontal cortex (FC) neurons of RTT patients and Mecp2-null mice. Increasing neuronal FXDY1 expression is sufficient to reduce dendritic arborization and spine formation, hallmarks of RTT neuropathology. Mecp2-null mouse cortical neurons have diminished Na(+),K(+)-ATPase activity, suggesting that aberrant FXYD1 expression contributes to abnormal neuronal activity in RTT. MeCP2 represses Fxyd1 transcription through direct interactions with sequences in the Fxyd1 promoter that are methylated in FC neurons. FXYD1 is therefore a MeCP2 target gene whose de-repression may directly contribute to RTT neuronal pathogenesis.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fosfoproteínas/genética , Síndrome de Rett/genética , Animais , Estudos de Casos e Controles , Metilação de DNA , Feminino , Expressão Gênica , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Regiões Promotoras Genéticas , Síndrome de Rett/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Neuropharmacology ; 51(6): 1030-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16895731

RESUMO

Kainate receptors are widely reported to regulate the release of neurotransmitter in the CNS, but the mechanisms involved remain controversial. Previous studies have found that the kainate receptor agonist ATPA, which selectively activates Glu(K5)-containing kainate receptors, depresses glutamate release at Schaffer-collateral synapses in the hippocampus. In the present study, we provide pharmacological evidence that this depressant effect is mediated by Glu(K5)-containing heteromers, but is distinct from a similar depressant effect engaged by the kainate receptor agonist domoate. The depressant effect of ATPA is insensitive to antagonists for GABA(A), GABA(B), and adenosine receptors, and is also unaffected by lowering the release probability by reducing extracellular calcium. However, the effect of ATPA is partly occluded by prior activation of GABA(B) receptors and completely occluded by prior activation of adenosine receptors, suggesting a mechanistic convergence of heteromeric Glu(K5) kainate receptor signaling with GABA(B) receptors and adenosine receptors. The effects of domoate are partially occluded by both adenosine and GABA(B) receptor agonists, indicating at least a partial convergence of Glu(K5)-lacking kainate receptor signaling with these other pathways. The depressant effect of ATPA is not blocked by inhibition of serine/threonine protein kinases. These results suggest that ATPA and domoate inhibit glutamate release through mechanisms that converge with those of classical metabotropic receptor agonists, although they do so through different receptors.


Assuntos
Adenosina/farmacologia , Receptores de GABA-B/efeitos dos fármacos , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores Pré-Sinápticos/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Baclofeno/farmacologia , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Agonistas GABAérgicos/farmacologia , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Masculino , Naftalenos/farmacologia , Fármacos Neuromusculares Despolarizantes/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Timina/análogos & derivados , Timina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA