Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 157(4): 2000-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22007023

RESUMO

The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amount. In contrast to the wild type, the oxidized form of GCL was dominant in pad2-1, suggesting a distinct redox environment. This finding was corroborated by the expression of GRX1-roGFP2, showing that the cytosolic glutathione redox potential was significantly less negative in pad2-1. Analysis of oxidative stress-related gene expression showed a higher transcript accumulation in pad2-1 of GLUTATHIONE REDUCTASE, GLUTATHIONE-S-TRANSFERASE, and RESPIRATORY BURST OXIDASE HOMOLOG D in response to the oomycete Phytophthora brassicae. Interestingly, oligogalacturonide elicitation in pad2-1 revealed a lower plasma membrane depolarization that was found to act upstream of an impaired hydrogen peroxide production. This impaired hydrogen peroxide production was also observed during pathogen infection and correlated with a reduced hypersensitive response in pad2-1. In addition, a lack of pathogen-triggered expression of the ISOCHORISMATE SYNTHASE1 gene, coding for the SA-biosynthetic enzyme isochorismate synthase, was identified as the cause of the SA deficiency in pad2-1. Together, our results indicate that the pad2-1 mutation is related to a decrease in GCL protein and that the resulting glutathione deficiency negatively affects important processes of disease resistance.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Oligossacarídeos/farmacologia , Phytophthora/fisiologia , Anti-Infecciosos/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/parasitologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Suscetibilidade a Doenças , Glutamato-Cisteína Ligase/genética , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Mutação , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Doenças das Plantas/parasitologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/parasitologia , Folhas de Planta/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Estresse Fisiológico
2.
Mol Plant Microbe Interact ; 24(9): 1061-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21649510

RESUMO

The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P. viticola infection on leaf starch and-to a larger extent-carbohydrate metabolism. Our results indicate that starch accumulation is associated with an increase in ADP-glucose pyrophosphorylase (AGPase) activity and modifications in the starch degradation pathway, especially an increased α-amylase activity. Together with these alterations in starch metabolism, we have observed an accumulation of hexoses, an increase in invertase activity, and a reduction of photosynthesis, indicating a source-to-sink transition in infected leaf tissue. Additionally, we have measured an accumulation of the disaccharide trehalose correlated to an increased trehalase gene expression and enzyme activity. Altogether, these results highlight a dramatic alteration of carbohydrate metabolism correlated with later stages of P. viticola development in leaves.


Assuntos
Enzimas/metabolismo , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Amido/metabolismo , Vitis/fisiologia , Metabolismo dos Carboidratos , Clorofila/metabolismo , Enzimas/genética , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Hexoses/análise , Hexoses/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oomicetos/patogenicidade , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Polissacarídeos/análise , Polissacarídeos/metabolismo , RNA de Plantas/genética , Amido/análise , Trealose/metabolismo , Vitis/enzimologia , Vitis/genética , Vitis/microbiologia , alfa-Amilases/genética , alfa-Amilases/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo
3.
Mol Plant Microbe Interact ; 23(8): 1012-21, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20615112

RESUMO

The molecular mechanisms underlying the process of priming are poorly understood. In the present study, we investigated the early signaling events triggered by beta-aminobutyric acid (BABA), a well-known priming-mediated plant resistance inducer. Our results indicate that, in contrast to oligogalacturonides (OG), BABA does not elicit typical defense-related early signaling events nor defense-gene expression in grapevine. However, in OG-elicited cells pretreated with BABA, production of reactive oxygen species (ROS) and expression of the respiratory-burst oxidase homolog RbohD gene were primed. In response to the causal agent of downy mildew Plasmopara viticola, a stronger ROS production was specifically observed in BABA-treated leaves. This process was correlated with an increased resistance. The NADPH oxidase inhibitor diphenylene iodonium (DPI) abolished this primed ROS production and reduced the BABA-induced resistance (BABA-IR). These results suggest that priming of an NADPH oxidase-dependent ROS production contributes to BABA-IR in the Vitis-Plasmopara pathosystem.


Assuntos
Aminobutiratos/farmacologia , NADPH Oxidases/metabolismo , Phytophthora/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Vitis/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Cálcio/metabolismo , Primers do DNA , Peróxido de Hidrogênio/metabolismo , Cinética , Phytophthora/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/microbiologia , Vitis/genética , Vitis/metabolismo , Vitis/microbiologia
4.
New Phytol ; 163(1): 149-157, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33873791

RESUMO

• An in vitro system with micropropagated oaks (Quercus robur) and the ectomycorrhizal fungus Piloderma croceum, which is characterized by a delayed mycorrhiza formation, was used to identify plant transcripts upregulated in the premycorrhizal phase. • Complementary DNA (cDNA) populations of uninoculated roots and fungal mycelium were subtracted from a cDNA population of inoculated roots. Differential expression was confirmed by reverse Northern and 50 clones for different polypeptides were found to be up-regulated. Twenty-nine clones were investigated in more detail. • For approximately half of the cDNA fragments no homologies could be identified in databases. The residual fragments code for polypeptides with homologies to known proteins involved in signal perception and transmission, stress responses, metabolism and growth. • Since many of the identified genes have not yet been described in the context of symbiotic events, their potential roles during early phases of the recognition process are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA