Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 63(6): 2941-2957, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32045236

RESUMO

CD73 inhibitors are promising drugs for the (immuno)therapy of cancer. Here, we present the synthesis, structure-activity relationships, and cocrystal structures of novel derivatives of the competitive CD73 inhibitor α,ß-methylene-ADP (AOPCP) substituted in the 2-position. Small polar or lipophilic residues increased potency, 2-iodo- and 2-chloro-adenosine-5'-O-[(phosphonomethyl)phosphonic acid] (15, 16) being the most potent inhibitors with Ki values toward human CD73 of 3-6 nM. Subject to the size and nature of the 2-substituent, variable binding modes were observed by X-ray crystallography. Depending on the binding mode, large species differences were found, e.g., 2-piperazinyl-AOPCP (21) was >12-fold less potent against rat CD73 compared to human CD73. This study shows that high CD73 inhibitory potency can be achieved by simply introducing a small substituent into the 2-position of AOPCP without the necessity of additional bulky N6-substituents. Moreover, it provides valuable insights into the binding modes of competitive CD73 inhibitors, representing an excellent basis for drug development.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Difosfato de Adenosina/análogos & derivados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , 5'-Nucleotidase/química , 5'-Nucleotidase/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/farmacologia , Animais , Cristalografia por Raios X , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Relação Estrutura-Atividade
2.
J Med Chem ; 58(15): 6248-63, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26147331

RESUMO

ecto-5'-Nucleotidase (eN, CD73) catalyzes the hydrolysis of extracellular AMP to adenosine. eN inhibitors have potential for use as cancer therapeutics. The eN inhibitor α,ß-methylene-ADP (AOPCP, adenosine-5'-O-[(phosphonomethyl)phosphonic acid]) was used as a lead structure, and derivatives modified in various positions were prepared. Products were tested at rat recombinant eN. 6-(Ar)alkylamino substitution led to the largest improvement in potency. N(6)-Monosubstitution was superior to symmetrical N(6),N(6)-disubstitution. The most potent inhibitors were N(6)-(4-chlorobenzyl)- (10l, PSB-12441, Ki 7.23 nM), N(6)-phenylethyl- (10h, PSB-12425, Ki 8.04 nM), and N(6)-benzyl-adenosine-5'-O-[(phosphonomethyl)phosphonic acid] (10g, PSB-12379, Ki 9.03 nM). Replacement of the 6-NH group in 10g by O (10q, PSB-12431) or S (10r, PSB-12553) yielded equally potent inhibitors (10q, 9.20 nM; 10r, 9.50 nM). Selected compounds investigated at the human enzyme did not show species differences; they displayed high selectivity versus other ecto-nucleotidases and ADP-activated P2Y receptors. Moreover, high metabolic stability was observed. These compounds represent the most potent eN inhibitors described to date.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Difosfato de Adenosina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Difosfato de Adenosina/química , Difosfato de Adenosina/farmacologia , Animais , Linhagem Celular , Inibidores Enzimáticos/química , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Ratos , Spodoptera
3.
Anal Biochem ; 446: 53-8, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24144488

RESUMO

Ecto-5'-nucleotidase (eN) is a membrane-bound enzyme that hydrolyzes extracellular nucleoside-5'-monophosphates yielding the respective nucleoside and phosphate. Increased levels of eN expression have been observed in many cancer cells. By increasing extracellular adenosine concentrations, they contribute to their proliferative, angiogenic, metastatic, and immunosuppressive effects. Therefore, eN is of considerable interest as a novel drug target for the treatment of cancer as well as of inflammatory diseases. In this study, we developed, optimized, and applied a highly sensitive radiometric assay using [³H]adenosine-5'-monophosphate (AMP) as a substrate. The reaction product [³H]adenosine was separated from [³H]AMP by precipitation of the latter with lanthanum chloride and subsequent filtration through glass fiber filters. Conditions were optimized to reproducibly collect the [³H]adenosine-containing filtrate used for quantitative determination. Validation of the assay yielded a mean Z' factor of 0.73, which demonstrates its suitability for high-throughput screening. The new assay shows a limit of detection that is at least 30-fold lower than those of common colorimetric methods (e.g., optimized malachite green assay and capillary electrophoresis-based assay procedures), and it is also superior to a recently developed luciferase-based assay.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/farmacologia , 5'-Nucleotidase/metabolismo , Monofosfato de Adenosina/metabolismo , Calibragem , Ensaios de Triagem em Larga Escala , Cinética , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA