Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 116249, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38697308

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is common worldwide. Genes and proteins contributing to drug disposition may show altered expression as MASLD progresses. To assess this further, we undertook transcriptomic and proteomic analysis of 137 pharmacogenes in liver biopsies from a large MASLD cohort. We performed sequencing on RNA from 216 liver biopsies (206 MASLD and 10 controls). Untargeted mass spectrometry proteomics was performed on a 103 biopsy subgroup. Selected RNA sequencing signals were replicated with an additional 187 biopsies. Comparison of advanced MASLD (fibrosis score 3/4) with milder disease (fibrosis score 0-2) by RNA sequencing showed significant alterations in expression of certain phase I, phase II and ABC transporters. For cytochromes P450, CYP2C19 showed the most significant decreased expression (30 % of that in mild disease) but significant decreased expression of other CYPs (including CYP2C8 and CYP2E1) also occurred. CYP2C19 also showed a significant decrease comparing the inflammatory form of MASLD (MASH) with non-MASH biopsies. Findings for CYP2C19 were confirmed in the replication cohort. Proteomics on the original discovery cohort confirmed decreased levels of several CYPs as MASLD advanced but this decrease was greatest for CYP2C19 where levels fell to 40 % control. This decrease may result in decreased CYP2C19 activity that could be problematic for prescription of drugs activated or metabolized by CYP2C19 as MASLD advances. More limited decreases for other P450s suggest fewer issues with non-CYP2C19 drug substrates. Negative correlations at RNA level between CYP2C19 and several cytokine genes provided initial insights into the mechanism underlying decreased expression.

2.
Mol Cell Proteomics ; 23(6): 100778, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679389

RESUMO

Trilaciclib, a cyclin-dependent kinase 4/6 inhibitor, was approved as a myeloprotective agent for protecting bone marrow from chemotherapy-induced damage in extensive-stage small cell lung cancer. This is achieved through the induction of a temporary halt in the cell cycle of bone marrow cells. While it has been studied in various cancer types, its potential in hematological cancers remains unexplored. This research aimed to investigate the efficacy of trilaciclib in hematological cancers. Utilizing mass spectrometry-based proteomics, we examined the alterations induced by trilaciclib in the chronic myeloid leukemia cell line, K562. Interestingly, trilaciclib promoted senescence in these cells rather than cell death, as observed in acute myeloid leukemia, acute lymphoblastic leukemia, and myeloma cells. In K562 cells, trilaciclib hindered cell cycle progression and proliferation by stabilizing cyclin-dependent kinase 4/6 and downregulating cell cycle-related proteins, along with the concomitant activation of autophagy pathways. Additionally, trilaciclib-induced senescence was also observed in the nonsmall cell lung carcinoma cell line, A549. These findings highlight trilaciclib's potential as a therapeutic option for hematological cancers and underscore the need to carefully balance senescence induction and autophagy modulation in chronic myeloid leukemia treatment, as well as in nonsmall cell lung carcinoma cell line.


Assuntos
Senescência Celular , Proteômica , Humanos , Senescência Celular/efeitos dos fármacos , Proteômica/métodos , Células K562 , Proliferação de Células/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Ciclo Celular/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos de Piridínio/farmacologia , Pirimidinas , Pirróis
3.
J Card Surg ; 37(7): 2009-2014, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35438810

RESUMO

BACKGROUND: The role of extracorporeal membrane oxygenation (ECMO) for patients with refractory respiratory failure due to coronavirus 2019 (COVID-19) is still unclear even now over a year into the pandemic. ECMO is becoming more commonplace even at smaller community hospitals. While the advantages of venovenous (VV) ECMO in acute respiratory distress syndrome (ARDS) from COVID-19 have not been fully determined, we believe the benefits outweighed the risks in our patient population. Here we describe all patients who underwent VV ECMO at our center. METHODS: All patients placed on ECMO at our center since the beginning of the pandemic, May 5, 2020, until February 20, 2021 were included in our study. All patients placed on ECMO during the time period described above were followed until discharge or death. The primary endpoint was in-hospital death. Secondary outcomes included discharge disposition, that is, whether patients were sent to a long-term acute care center (LTAC), inpatient rehabilitation, or went directly home. RESULTS: A total of 41 patients were placed on VV ECMO for refractory acute respiratory failure. Survival to discharge, the primary end point, was 63.4% (26/41). Inpatient mortality was 36.6% (15/41). CONCLUSIONS: We show here that a successful high-volume VV ECMO program for ARDS is achievable at even a medium-size community hospital. We think our success can be replicated by most small- and medium-size community hospitals with cardiothoracic surgery programs and intensivist teams.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , COVID-19/terapia , Mortalidade Hospitalar , Hospitais Comunitários , Humanos , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia , Estudos Retrospectivos
4.
Biochem J ; 475(6): 1159-1176, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483296

RESUMO

Bacterial sialidases cleave terminal sialic acid from a variety of host glycoproteins, and contribute to survival and growth of many human-dwelling bacterial species, including various pathogens. Tannerella forsythia, an oral, Gram-negative, fastidious anaerobe, is a key organism in periodontal disease and possesses a dedicated sialic acid utilisation and scavenging (nan) operon, including NanH sialidase. Here, we describe biochemical characterisation of recombinant NanH, including its action on host-relevant sialoglycans such as sialyl Lewis A and sialyl Lewis X (SLeA/X), and on human cell-attached sialic acids directly, uncovering that it is a highly active broad specificity sialidase. Furthermore, the N-terminal domain of NanH was hypothesised and proved to be capable of binding to a range of sialoglycans and non-sialylated derivatives with Kd in the micromolar range, as determined by steady-state tryptophan fluorescence spectroscopy, but it has no catalytic activity in isolation from the active site. We consider this domain to represent the founding member of a novel subfamily of carbohydrate-binding module (CBM), involved in glycosidase-ligand binding. In addition, we created a catalytically inactive version of the NanH enzyme (FRIP → YMAP) that retained its ability to bind sialic acid-containing ligands and revealed for the first time that binding activity of a CBM is enhanced by association with the catalytic domain. Finally, we investigated the importance of Lewis-type sialoglycans on T. forsythia-host interactions, showing that nanomolar amounts of SLeA/X were capable of reducing invasion of oral epithelial cells by T. forsythia, suggesting that these are key ligands for bacterial-cellular interactions during periodontal disease.


Assuntos
Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno , Neuraminidase/química , Neuraminidase/metabolismo , Domínios e Motivos de Interação entre Proteínas , Tannerella forsythia/enzimologia , Sítios de Ligação , Metabolismo dos Carboidratos/genética , Domínio Catalítico , Interações Hospedeiro-Patógeno/genética , Humanos , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/genética , Domínios e Motivos de Interação entre Proteínas/genética , Ácidos Siálicos/metabolismo , Especificidade por Substrato , Tannerella forsythia/genética , Tannerella forsythia/metabolismo , Tannerella forsythia/patogenicidade , Células Tumorais Cultivadas
5.
Microb Pathog ; 94: 12-20, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26318875

RESUMO

Tannerella forsythia is a periodontal pathogen implicated in periodontitis. This gram-negative pathogen depends on exogenous peptidoglycan amino sugar N-acetylmuramic acid (NAM) for growth. In the biofilm state the bacterium can utilize sialic acid (Neu5Ac) instead of NAM to sustain its growth. Thus, the sialic acid utilization system of the bacterium plays a critical role in the growth and survival of the organism in the absence of NAM. We sought the function of a T. forsythia gene annotated as nanT coding for an inner-membrane sugar transporter located on a sialic acid utilization genetic cluster. To determine the function of this putative sialic acid transporter, an isogenic nanT-deletion mutant generated by allelic replacement strategy was evaluated for biofilm formation on NAM or Neu5Ac, and survival on KB epithelial cells. Moreover, since T. forsythia forms synergistic biofilms with Fusobacterium nucleatum, co-biofilm formation activity in mixed culture and sialic acid uptake in culture were also assessed. The data showed that the nanT-inactivated mutant of T. forsythia was attenuated in its ability to uptake sialic acid. The mutant formed weaker biofilms compared to the wild-type strain in the presence of sialic acid and as co-biofilms with F. nucleatum. Moreover, compared to the wild-type T. forsythia nanT-inactivated mutant showed reduced survival when incubated on KB epithelial cells. Taken together, the data presented here demonstrate that NanT-mediated sialic transportation is essential for sialic acid utilization during biofilm growth and survival of the organism on epithelial cells and implies sialic acid might be key for its survival both in subgingival biofilms and during infection of human epithelial cells in vivo.


Assuntos
Biofilmes/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/metabolismo , Tannerella forsythia/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , DNA Bacteriano/genética , Fusobacterium nucleatum/crescimento & desenvolvimento , Fusobacterium nucleatum/metabolismo , Genes Bacterianos , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/metabolismo , Humanos , Células KB , Ácidos Murâmicos/metabolismo , Neuraminidase/metabolismo , Transportadores de Ânions Orgânicos/biossíntese , Transportadores de Ânions Orgânicos/genética , Deleção de Sequência , Simportadores/biossíntese , Simportadores/genética , Tannerella forsythia/genética , Tannerella forsythia/crescimento & desenvolvimento
6.
Biochem J ; 472(2): 157-67, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26378150

RESUMO

Tannerella forsythia, a Gram-negative member of the Bacteroidetes has evolved to harvest and utilize sialic acid. The most common sialic acid in humans is a mono-N-acetylated version termed Neu5Ac (5-N-acetyl-neuraminic acid). Many bacteria are known to access sialic acid using sialidase enzymes. However, in humans a high proportion of sialic acid contains a second acetyl group attached via an O-group, i.e. chiefly O-acetylated Neu5,9Ac2 or Neu5,4Ac2. This diacetylated sialic acid is not cleaved efficiently by many sialidases and in order to access diacetylated sialic acid, some organisms produce sialate-O-acetylesterases that catalyse the removal of the second acetyl group. In the present study, we performed bioinformatic and biochemical characterization of a putative sialate-O-acetylesterase from T. forsythia (NanS), which contains two putative SGNH-hydrolase domains related to sialate-O-acetylesterases from a range of organisms. Purification of recombinant NanS revealed an esterase that has activity against Neu5,9Ac2 and its glycolyl form Neu5Gc,9Ac. Importantly, the enzyme did not remove acetyl groups positioned at the 4-O position (Neu5,4Ac2). In addition NanS can act upon complex N-glycans released from a glycoprotein [erythropoietin (EPO)], bovine submaxillary mucin and oral epithelial cell-bound glycans. When incubated with its cognate sialidase, NanS increased sialic acid release from mucin and oral epithelial cell surfaces, implying that this esterase improves sialic acid harvesting for this pathogen and potentially other members of the oral microbiome. In summary, we have characterized a novel sialate-O-acetylesterase that contributes to the sialobiology of this important human pathogen and has potential applications in the analysis of sialic acid diacetylation of biologics in the pharmaceutical industry.


Assuntos
Acetilesterase/metabolismo , Proteínas de Bactérias/metabolismo , Bacteroides/enzimologia , Mucosa Bucal/metabolismo , Ácidos Neuramínicos/metabolismo , Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Acetilação , Acetilesterase/química , Acetilesterase/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Bovinos , Linhagem Celular Tumoral , Eritropoetina/genética , Eritropoetina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Mucosa Bucal/citologia , Mucosa Bucal/microbiologia , Neuraminidase/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sialoglicoproteínas/química , Sialoglicoproteínas/metabolismo , Sialomucinas/química , Sialomucinas/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA