Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
J Carcinog ; 9: 4, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20442803

RESUMO

BACKGROUND: XRCC1 is a scaffold protein involved in the early and late stages of Base Excision Repair (BER). Three DNA polymorphisms occur in XRCC1, resulting in non-synonymous amino acid changes, which could alter the binding or regulatory activities of XRCC1. MATERIALS AND METHODS: We used a family-based case-control study design to evaluate the association between XRCC1 polymorphisms and breast cancer risk. Participants were breast cancer cases and their unaffected sisters enrolled in the New York Site of the Breast Cancer Family Registry. Conditional logistic regression was used to assess associations between genotype and breast cancer. XRCC1 mRNA levels and DNA nicking activity were measured in lymphoblastoid cell lines from unaffected sisters to determine whether the XRCC1 R399Q polymorphism has a functional effect on expression or protein activity. RESULTS: XRCC1 194W was associated with a non-significant increase in breast cancer, while XRCC1 280H and XRCC1 399Q were associated with a non-significant decrease in breast cancer. We found a significant increase in XRCC1 expression in 399Q/Q lymphoblastoid cell lines from unaffected sisters (n=28, P=0.03). An increase in median nicking activity was not statistically significant. CONCLUSIONS: Our results suggest that XRCC1 399Q may alter mRNA expression and DNA repair phenotype, although the main effects of the genotype were not significantly associated with familial cancer risk. Additional research on the regulation of XRCC1 expression will contribute to an understanding of how this polymorphism may impact disease risk.

3.
J Carcinog ; 8: 14, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19822958

RESUMO

BACKGROUND: Recent epidemiologic evidence suggests that the common polymorphism at amino acid residue 399 of the x-ray cross complementing-1 (XRCC1) protein, a key component of the base excision repair (BER) pathway for DNA damage, plays a significant role in the genetic variability of individuals in terms of the mutagenic damage they experience following exposure to the carcinogen vinyl chloride (VC). The aim of this study was to provide support for the biological plausibility of these epidemiologic observations with experimental data derived from cell lines in culture from individuals who were either homozygous wild-type or homozygous variant for this XRCC1 polymorphism following exposure to chloroethylene oxide (CEO), the active metabolite of VC, with measurement of the induced etheno-DNA adducts before and after repair. MATERIALS AND METHODS: Immortalized lymphoblast cell lines from seven VC workers (four homozygous wild-type and three homozygous variant for the 399 XRCC1 polymorphism) were exposed to CEO, and etheno-adenosine (epsilonA) adduct levels were determined by enzyme-linked immunosorbent assay (ELISA) pre-exposure and at 0, 4, 8 and 24 h following exposure. RESULTS: The average epsilonA adduct levels were statistically significantly higher in the variant cells compared to the wild-type cells at 8 and 24 h following exposure (P Conclusion: These results are consistent with the epidemiologic findings of the types of VC-induced biomarkers observed in exposed individuals and the mutational spectra found in the resultant tumors as well as the key role that BER, especially XRCC1, plays in this carcinogenic pathway.

4.
J Carcinog ; 8: 12, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19661678

RESUMO

AIM: The xeroderma pigmentosum D (XPD) protein is a DNA helicase involved in the repair of DNA damage, including nucleotide excision repair (NER) and transcription-coupled repair (TCR). The C-terminal domain of XPD has been implicated in interactions with other components of the TFIIH complex, and it is also the site of a common genetic polymorphism in XPD at amino acid residue 751 (Lys->Gln). Some evidence suggests that this polymorphism may alter DNA repair capacity and increase cancer risk. The aim of this study was to investigate whether these effects could be attributable to conformational changes in XPD induced by the polymorphism. MATERIALS AND METHODS: Molecular dynamics techniques were used to predict the structure of the wild-type and polymorphic forms of the C-terminal domain of XPD and differences in structure produced by the polymorphic substitution were determined. RESULTS: The results indicate that, although the general configuration of both proteins is similar, the substitution produces a significant conformational change immediately N-terminal to the site of the polymorphism. CONCLUSION: These results provide support for the hypothesis that this polymorphism in XPD could affect DNA repair capability, and hence cancer risk, by altering the structure of the C-terminal domain.

5.
Biomarkers ; 14(3): 148-55, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19274602

RESUMO

We have recently suggested that polymorphisms in metabolism and repair pathways may play a role in modulating the effects of exposure to the carcinogen vinyl chloride in the production of biomarkers of its mutagenic damage. The aim of the present study was to extend these observations by examining gene-environment interactions between several common polymorphisms in the DNA repair genes XRCC1 and ERCC2/XPD and vinyl chloride exposure on the production of vinyl chloride-induced biomarkers of mutation. A cohort of 546 French vinyl chloride workers were genotyped for the XRCC1 codon 194 (Arg>Trp; rs1799782), 280 (Arg>His; rs25489) and 399 (Arg>Gln; rs25487) polymorphisms and the ERCC2/XPD codon 312 (Asp>Asn; rs1799793) and 751 (Lys>Gln; rs13181) polymorphisms. The results demonstrated a statistically significant allele dosage effect of the XRCC1 399 variant on the production of the vinyl chloride-induced mutant p53 biomarker, even after controlling for confounders including cumulative vinyl chloride exposure (p = 0.03), with a potentially supramultiplicative gene-environment interaction. In addition, the results demonstrate statistically significant allele dosage effects of the ERCC2/XPD 312 and 751 variants on the production of the vinyl chloride-induced mutant ras-p21 biomarker, even after controlling for confounders including cumulative vinyl chloride exposure (p < 0.0001 and p = 0.0006, respectively), with a potentially supramultiplicative gene-environment interaction for the codon 751 allele. Finally, the results suggest potential supramultiplicative gene-gene interactions between CYP2E1 (c2 allele; rs3813867) and ERCC2/XPD polymorphisms that are consistent with the proposed carcinogenic pathway for vinyl chloride, which requires metabolic activation by CYP2E1 to reactive intermediates that form DNA adducts that, if not removed by DNA repair mechanisms, result in oncogenic mutations.


Assuntos
Carcinógenos/toxicidade , Reparo do DNA/genética , Genes , Exposição Ocupacional , Polimorfismo Genético , Cloreto de Vinil/toxicidade , Sequência de Bases , Estudos de Casos e Controles , Primers do DNA , Humanos
6.
Mol Cell Biol ; 27(10): 3828-38, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17353272

RESUMO

During meiosis, double-strand breaks (DSBs) lead to crossovers, thought to arise from the resolution of double Holliday junctions (HJs) by an HJ resolvase. In Schizosaccharomyces pombe, meiotic crossovers are produced primarily through a mechanism requiring the Mus81-Eme1 endonuclease complex. Less is known about the processes that produces crossovers during the repair of DSBs in mitotic cells. We employed an inducible DSB system to determine the role of Rqh1-Top3 and Mus81-Eme1 in mitotic DSB repair and crossover formation in S. pombe. In agreement with the meiotic data, crossovers are suppressed in cells lacking Mus81-Eme1. And relative to the wild type, rqh1Delta cells show a fourfold increase in crossover frequency. This suppression of crossover formation by Rqh1 is dependent on its helicase activity. We found that the synthetic lethality of cells lacking both Rqh1 and Eme1 is suppressed by loss of swi5(+), which allowed us to show that the excess crossovers formed in an rqh1Delta background are independent of Mus81-Eme1. This result suggests that a second process for crossover formation exists in S. pombe and is consistent with our finding that deletion of swi5(+) restored meiotic crossovers in eme1Delta cells. Evidence suggesting that Rqh1 also acts downstream of Swi5 in crossover formation was uncovered in these studies. Our results suggest that during Rhp51-dependent repair of DSBs, Rqh1-Top3 suppresses crossovers in the Rhp57-dependent pathway while Mus81-Eme1 and possibly Rqh1 promote crossovers in the Swi5-dependent pathway.


Assuntos
Troca Genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Mitose/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Campo Pulsado , Endonucleases/genética , Conversão Gênica , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/genética
7.
Int J Occup Med Environ Health ; 19(1): 45-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16881598

RESUMO

OBJECTIVES: The purpose of this study was to examine whether polymorphisms in the XRCC1 DNA-repair protein can affect the base excision repair capacity to remove etheno-DNA adducts induced by vinyl chloride exposure that account for the occurrence of mutant biomarkers of effect seen in exposed workers. MATERIALS AND METHODS: Using polymerase chain reaction-restriction fragment length polymorphism and fluorescence polarization techniques, we examined the effect of three x-ray cross complementing-1 protein polymorphisms, at codons 194, 280 and 399, on the occurrence of mutant biomarkers in ras-p21 and p53 induced by vinyl chloride exposure in a cohort of 211 French vinyl chloride workers to correlate differences in genotype with differences in the presence of these biomarkers. Also, cell cultures of lymphoblast lines from a pair of individuals, one homozygous wild-type and one homozygous variant for the codon 399 polymorphism, were exposed to the reactive intermediate of vinyl chloride, and, using an enzyme-linked immunosorbent assay, levels of etheno-DNA adducts generated and repaired were measured and compared. RESULTS: After adjusting for age, smoking, alcohol drinking and cumulative vinyl chloride exposure, compared to workers who were homozygous wild-type for all alleles, the odds ratio for the presence of either biomarker increased to 2.0 (95% CI: 1.0-3.9) for workers with any one variant allele and to 2.4 (95% CI: 1.1-5.2) for workers with more than one variant allele. Data from the cell culture experiments indicating that repair of etheno-DNA adducts is considerably better in wild-type cells compared to polymorphic cells were supportive of the epidemiologic results. CONCLUSIONS: This study provides further evidence that polymorphisms in XRCC1 can be an important biomarker of susceptibility in populations exposed to agents that produce damage removed by base excision repair.


Assuntos
Adutos de DNA/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Polimorfismo Genético , Cloreto de Vinil/intoxicação , Adulto , Idoso , Códon/genética , Estudos de Coortes , Dano ao DNA , França , Humanos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional , Cloreto de Vinil/metabolismo , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
8.
EMBO J ; 24(11): 2024-33, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15889139

RESUMO

SGS1 encodes a DNA helicase whose homologues in human cells include the BLM, WRN, and RECQ4 genes, mutations in which lead to cancer-predisposition syndromes. Clustering of synthetic genetic interactions identified by large-scale genetic network analysis revealed that the genetic interaction profile of the gene RMI1 (RecQ-mediated genome instability, also known as NCE4 and YPL024W) was highly similar to that of SGS1 and TOP3, suggesting a functional relationship between Rmi1 and the Sgs1/Top3 complex. We show that Rmi1 physically interacts with Sgs1 and Top3 and is a third member of this complex. Cells lacking RMI1 activate the Rad53 checkpoint kinase, undergo a mitotic delay, and display increased relocalization of the recombination repair protein Rad52, indicating the presence of spontaneous DNA damage. Consistent with a role for RMI1 in maintaining genome integrity, rmi1Delta cells exhibit increased recombination frequency and increased frequency of gross chromosomal rearrangements. In addition, rmi1Delta strains fail to fully activate Rad53 upon exposure to DNA-damaging agents, suggesting that Rmi1 is also an important part of the Rad53-dependent DNA damage response.


Assuntos
DNA Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Quinase do Ponto de Checagem 2 , Dano ao DNA , DNA Helicases/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/fisiologia , Evolução Molecular , Genes cdc , Genoma Fúngico , Complexos Multiproteicos , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA , RecQ Helicases , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
9.
Genetics ; 170(2): 519-31, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15802523

RESUMO

Following replication arrest, multiple cellular responses are triggered to maintain genomic integrity. In fission yeast, the RecQ helicase, Rqh1, plays a critical role in this process. This is demonstrated in Deltarqh1 cells that, following treatment with hydroxyurea (HU), undergo an aberrant mitosis leading to cell death. Previous data suggest that Rqh1 functions with homologous recombination (HR) in recovery from replication arrest. We have found that loss of the HR genes rhp55(+) or rhp57(+), but not rhp51(+) or rhp54(+), suppresses the HU sensitivity of Deltarqh1 cells. Much of this suppression requires Rhp51 and Rhp54. In addition, this suppression is partially dependent on swi5(+). In budding yeast, overexpressing Rad51 (the Rhp51 homolog) minimized the need for Rad55/57 (Rhp55/57) in nucleoprotein filament formation. We overexpressed Rhp51 in Schizosaccharomyces pombe and found that it greatly reduced the requirement for Rhp55/57 in recovery from DNA damage. However, overexpressing Rhp51 did not change the Deltarhp55 suppression of the HU sensitivity of Deltarqh1, supporting an Rhp55/57 function during HR independent of nucleoprotein filament formation. These results are consistent with Rqh1 playing a role late in HR following replication arrest and provide evidence for a postsynaptic function for Rhp55/57.


Assuntos
Adenosina Trifosfatases/fisiologia , DNA Helicases/genética , DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Adenosina Trifosfatases/metabolismo , Morte Celular , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Eletroforese em Gel de Campo Pulsado , Teste de Complementação Genética , Genótipo , Hidroxiureia/farmacologia , Mitose , Modelos Genéticos , Mutação , Nucleoproteínas/química , Plasmídeos/metabolismo , Recombinação Genética , Schizosaccharomyces/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Sensibilidade e Especificidade , Sinapses , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA