Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Physiol ; 602(12): 2839-2854, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748517

RESUMO

Loss of muscle mass and function induced by sepsis contributes to physical inactivity and disability in intensive care unit patients. Limiting skeletal muscle deconditioning may thus be helpful in reducing the long-term effect of muscle wasting in patients. We tested the hypothesis that invalidation of the myostatin gene, which encodes a powerful negative regulator of skeletal muscle mass, could prevent or attenuate skeletal muscle wasting and improve survival of septic mice. Sepsis was induced by caecal ligature and puncture (CLP) in 13-week-old C57BL/6J wild-type and myostatin knock-out male mice. Survival rates were similar in wild-type and myostatin knock-out mice seven days after CLP. Loss in muscle mass was also similar in wild-type and myostatin knock-out mice 4 and 7 days after CLP. The loss in muscle mass was molecularly supported by an increase in the transcript level of E3-ubiquitin ligases and autophagy-lysosome markers. This transcriptional response was blunted in myostatin knock-out mice. No change was observed in the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway. Muscle strength was similarly decreased in wild-type and myostatin knock-out mice 4 and 7 days after CLP. This was associated with a modified expression of genes involved in ion homeostasis and excitation-contraction coupling, suggesting that a long-term functional recovery following experimental sepsis may be impaired by a dysregulated expression of molecular determinants of ion homeostasis and excitation-contraction coupling. In conclusion, myostatin gene invalidation does not provide any benefit in preventing skeletal muscle mass loss and strength in response to experimental sepsis. KEY POINTS: Survival rates are similar in wild-type and myostatin knock-out mice seven days after the induction of sepsis. Loss in muscle mass and muscle strength are similar in wild-type and myostatin knock-out mice 4 and 7 days after the induction of an experimental sepsis. Despite evidence of a transcriptional regulation, the protein level of markers of the anabolic insulin/IGF1-Akt-mTOR pathway remained unchanged. RT-qPCR analysis of autophagy-lysosome pathway markers indicates that activity of the pathway may be altered by experimental sepsis in wild-type and myostatin knock-out mice. Experimental sepsis induces greater variations in the mRNA levels of wild-type mice than those of myostatin knock-out mice, without providing any significant catabolic resistance or functional benefits.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético , Miostatina , Sepse , Animais , Miostatina/genética , Miostatina/metabolismo , Sepse/genética , Sepse/metabolismo , Músculo Esquelético/metabolismo , Masculino , Camundongos , Autofagia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Força Muscular , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética
2.
J Cachexia Sarcopenia Muscle ; 14(3): 1150-1167, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36864755

RESUMO

Cancer cachexia is a systemic hypoanabolic and catabolic syndrome that diminishes the quality of life of cancer patients, decreases the efficiency of therapeutic strategies and ultimately contributes to decrease their lifespan. The depletion of skeletal muscle compartment, which represents the primary site of protein loss during cancer cachexia, is of very poor prognostic in cancer patients. In this review, we provide an extensive and comparative analysis of the molecular mechanisms involved in the regulation of skeletal muscle mass in human cachectic cancer patients and in animal models of cancer cachexia. We summarize data from preclinical and clinical studies investigating how the protein turnover is regulated in cachectic skeletal muscle and question to what extent the transcriptional and translational capacities, as well as the proteolytic capacity (ubiquitin-proteasome system, autophagy-lysosome system and calpains) of skeletal muscle are involved in the cachectic syndrome in human and animals. We also wonder how regulatory mechanisms such as insulin/IGF1-AKT-mTOR pathway, endoplasmic reticulum stress and unfolded protein response, oxidative stress, inflammation (cytokines and downstream IL1ß/TNFα-NF-κB and IL6-JAK-STAT3 pathways), TGF-ß signalling pathways (myostatin/activin A-SMAD2/3 and BMP-SMAD1/5/8 pathways), as well as glucocorticoid signalling, modulate skeletal muscle proteostasis in cachectic cancer patients and animals. Finally, a brief description of the effects of various therapeutic strategies in preclinical models is also provided. Differences in the molecular and biochemical responses of skeletal muscle to cancer cachexia between human and animals (protein turnover rates, regulation of ubiquitin-proteasome system and myostatin/activin A-SMAD2/3 signalling pathways) are highlighted and discussed. Identifying the various and intertwined mechanisms that are deregulated during cancer cachexia and understanding why they are decontrolled will provide therapeutic targets for the treatment of skeletal muscle wasting in cancer patients.


Assuntos
Caquexia , Neoplasias , Animais , Humanos , Caquexia/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Miostatina/metabolismo , Qualidade de Vida , Músculo Esquelético/metabolismo , Neoplasias/complicações , Neoplasias/metabolismo , Análise de Dados , Ubiquitinas/metabolismo , Ubiquitinas/farmacologia , Ubiquitinas/uso terapêutico
3.
J Cachexia Sarcopenia Muscle ; 13(3): 1686-1703, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35277933

RESUMO

BACKGROUND: Cancer patients at advanced stages experience a severe depletion of skeletal muscle compartment together with a decrease in muscle function, known as cancer cachexia. Cachexia contributes to reducing quality of life, treatment efficiency, and lifespan of cancer patients. However, the systemic nature of the syndrome is poorly documented. Here, we hypothesize that glucocorticoids would be important systemic mediators of cancer cachexia. METHODS: To explore the role of glucocorticoids during cancer cachexia, biomolecular analyses were performed on several tissues (adrenal glands, blood, hypothalamus, liver, and skeletal muscle) collected from ApcMin/+ male mice, a mouse model of intestine and colon cancer, aged of 13 and 23 weeks, and compared with wild type age-matched C57BL/6J littermates. RESULTS: Twenty-three-week-old Apc mice recapitulated important features of cancer cachexia including body weight loss (-16%, P < 0.0001), muscle atrophy (gastrocnemius muscle: -53%, P < 0.0001), and weakness (-50% in tibialis anterior muscle force, P < 0.0001), increased expression of atrogens (7-fold increase in MuRF1 transcript level, P < 0.0001) and down-regulation of Akt-mTOR pathway (3.3-fold increase in 4EBP1 protein content, P < 0.0001), together with a marked transcriptional rewiring of hepatic metabolism toward an increased expression of gluconeogenic genes (Pcx: +90%, Pck1: +85%), and decreased expression of glycolytic (Slc2a2: -40%, Gk: -30%, Pklr: -60%), ketogenic (Hmgcs2: -55%, Bdh1: -80%), lipolytic/fatty oxidation (Lipe: -50%, Mgll: -60%, Cpt2: -60%, Hadh: -30%), and lipogenic (Acly: -30%, Acacb: -70%, Fasn: -45%) genes. The hypothalamic pituitary-adrenal axis was activated, as evidenced by the increase in the transcript levels of genes encoding corticotropin-releasing hormone in the hypothalamus (2-fold increase, P < 0.01), adrenocorticotropic hormone receptor (3.4-fold increase, P < 0.001), and steroid biosynthesis enzymes (Cyp21a1, P < 0.0001, and Cyp11b1, P < 0.01) in the adrenal glands, as well as by the increase in corticosterone level in the serum (+73%, P < 0.05), skeletal muscle (+17%, P < 0.001), and liver (+24%, P < 0.05) of cachectic 23-week-old Apc mice. A comparative transcriptional analysis with dexamethasone-treated C57BL/6J mice indicated that the activation of the hypothalamic-pituitary-adrenal axis in 23-week-old ApcMin/+ mice was significantly associated with the transcription of glucocorticoid-responsive genes in skeletal muscle (P < 0.05) and liver (P < 0.001). The transcriptional regulation of glucocorticoid-responsive genes was also observed in the gastrocnemius muscle of Lewis lung carcinoma tumour-bearing mice and in KPC mice (tibialis anterior muscle and liver). CONCLUSIONS: These findings highlight the role of the hypothalamic-pituitary-adrenal-glucocorticoid pathway in the transcriptional regulation of skeletal muscle catabolism and hepatic metabolism during cancer cachexia. They also provide the paradigm for the design of new therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Lewis , Sistema Hipófise-Suprarrenal , Idoso , Animais , Caquexia/genética , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Expressão Gênica , Glucocorticoides , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/patologia , Qualidade de Vida
4.
Artigo em Inglês | MEDLINE | ID: mdl-34748935

RESUMO

Skeletal muscle mitochondria of the African pygmy mouse Mus mattheyi exhibit markedly reduced oxygen consumption and ATP synthesis rates but a higher mitochondrial efficiency than what would be expected from allometric trends. In the present study, we assessed whether such reduction of mitochondrial activity in M. mattheyi can limit the oxidative stress associated with an increased generation of mitochondrial reactive oxygen species. We conducted a comparative study of mitochondrial oxygen consumption, H2O2 release, and electron leak (%H2O2/O) in skeletal muscle mitochondria isolated from the extremely small African pygmy mouse (M. mattheyi, ~5 g) and Mus musculus, which is a larger Mus species (~25 g). Mitochondria were energized with pyruvate, malate, and succinate, after which fluxes were measured at different steady-state rates of oxidative phosphorylation. Overall, M. mattheyi exhibited lower oxidative activity and higher electron leak than M. musculus, while the H2O2 release did not differ significantly between these two Mus species. We further found that the high coupling efficiency of skeletal muscle mitochondria from M. mattheyi was associated with high electron leak. Nevertheless, data also show that, despite the higher electron leak, the lower mitochondrial respiratory capacity of M. mattheyi limits the cost of a net increase in H2O2 release, which is lower than that expected for a mammals of this size.


Assuntos
Mitocôndrias Musculares/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
5.
Breast Cancer Res Treat ; 188(3): 601-613, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34013451

RESUMO

PURPOSE: Sarcopenia has been identified as an important prognostic factor for patients with cancer. This study aimed at exploring the potential associations between a 6-month physical activity intervention and muscle characteristics, sarcopenia, oxidative stress and toxicities in patients with metastatic breast cancer. METHODS: Women newly diagnosed with metastatic breast cancer (N = 49) participated in an unsupervised, personalized, 6-month physical activity intervention with activity tracker. Computerized tomography images at the third lumbar vertebra were analysed at baseline, three months and six months to assess sarcopenia (muscle mass index < 40 cm2/m2) and muscle quality (poor if muscle attenuation < 37.8 Hounsfield Units). Oxidative markers included plasma antioxidant enzymes (catalase, glutathione peroxidase and superoxide dismutase activities), prooxidant enzymes (NADPH oxidase and myeloperoxidase activities) and oxidative stress damage markers (advanced oxidation protein products, malondialdehyde (MDA) and DNA oxidation. RESULTS: At baseline 53% (mean age 55 years (SD 10.41)) were sarcopenic and 75% had poor muscle quality. Muscle cross sectional area, skeletal muscle radiodensity, lean body mass remained constant over the six months (p = 0.75, p = 0.07 and p = 0.75 respectively), but differed significantly between sarcopenic and non-sarcopenic patients at baseline and 6-months. Sarcopenic patients at baseline were more likely to have an increase of MDA (p = 0.02) at 6 months. Being sarcopenic during at least one moment during the 6-month study was associated with a higher risk of developing severe toxicities (grade > 2) (p = 0.02). CONCLUSIONS: This study suggests potential benefits of physical activity for maintenance of muscle mass. Sarcopenia can alter many parameters and disturb the pro and antioxidant balance.


Assuntos
Neoplasias da Mama , Sarcopenia , Biomarcadores , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Exercício Físico , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Estresse Oxidativo , Sarcopenia/diagnóstico , Sarcopenia/etiologia , Sarcopenia/patologia
6.
J Cachexia Sarcopenia Muscle ; 12(2): 252-273, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33783983

RESUMO

Cancer cachexia is a complex multi-organ catabolic syndrome that reduces mobility, increases fatigue, decreases the efficiency of therapeutic strategies, diminishes the quality of life, and increases the mortality of cancer patients. This review provides an exhaustive and comprehensive analysis of cancer cachexia-related phenotypic changes in skeletal muscle at both the cellular and subcellular levels in human cancer patients, as well as in animal models of cancer cachexia. Cancer cachexia is characterized by a major decrease in skeletal muscle mass in human and animals that depends on the severity of the disease/model and the localization of the tumour. It affects both type 1 and type 2 muscle fibres, even if some animal studies suggest that type 2 muscle fibres would be more prone to atrophy. Animal studies indicate an impairment in mitochondrial oxidative metabolism resulting from a decrease in mitochondrial content, an alteration in mitochondria morphology, and a reduction in mitochondrial metabolic fluxes. Immuno-histological analyses in human and animal models also suggest that a faulty mechanism of skeletal muscle repair would contribute to muscle mass loss. An increase in collagen deposit, an accumulation of fat depot outside and inside the muscle fibre, and a disrupted contractile machinery structure are also phenotypic features that have been consistently reported in cachectic skeletal muscle. Muscle function is also profoundly altered during cancer cachexia with a strong reduction in skeletal muscle force. Even though the loss of skeletal muscle mass largely contributes to the loss of muscle function, other factors such as muscle-nerve interaction and calcium handling are probably involved in the decrease in muscle force. Longitudinal analyses of skeletal muscle mass by imaging technics and skeletal muscle force in cancer patients, but also in animal models of cancer cachexia, are necessary to determine the respective kinetics and functional involvements of these factors. Our analysis also emphasizes that measuring skeletal muscle force through standardized tests could provide a simple and robust mean to early diagnose cachexia in cancer patients. That would be of great benefit to cancer patient's quality of life and health care systems.


Assuntos
Caquexia , Músculo Esquelético , Neoplasias , Animais , Caquexia/etiologia , Caquexia/patologia , Modelos Animais de Doenças , Humanos , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias/complicações , Neoplasias/patologia , Qualidade de Vida
7.
BMC Cancer ; 20(1): 622, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620149

RESUMO

BACKGROUND: Patients with a metastatic breast cancer suffer from a deteriorated health-related quality of life and numerous symptoms such as pain, severe fatigue and a decrease of their physical fitness. As the feasibility of a physical activity program has been demonstrated in this population, ABLE02 aims to assess the efficacy of a 6 month-physical activity program using connected devices to improve health-related quality of life and to reduce fatigue in women with metastatic breast cancer. METHODS: ABLE02 is a prospective, national, multicenter, randomized, controlled and open-label study. A total of 244 patients with a metastatic breast cancer, with at least one positive hormone receptor and a first-line chemotherapy planned, will be randomly assigned (1:1 ratio) to: (i) the intervention arm to receive physical activity recommendations, an activity tracker to wear 24 h a day during the whole intervention (6 months) with at least three weekly walking sessions and quizzes each week on physical activity and nutrition (ii) the control arm to receive physical activity recommendations only. Health-related quality of life will be assessed every 6 weeks and main assessments will be conducted at baseline, M3, M6, M12 and M18 to evaluate the clinical, physical, biological and psychological parameters and survival of participants. All questionnaires will be completed on a dedicated application. DISCUSSION: An activity program based on a smartphone application linked to an activity tracker may help to improve quality of life and reduce fatigue of patients with a metastatic breast cancer. The growth of e-health offers the opportunity to get real-time data as well as improving patient empowerment in order to change long-term behaviors. TRIAL REGISTRATION: NCT number: NCT04354233 .


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/terapia , Terapia por Exercício/métodos , Fadiga/reabilitação , Qualidade de Vida , Adulto , Neoplasias da Mama/complicações , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Terapia por Exercício/instrumentação , Fadiga/etiologia , Fadiga/psicologia , Feminino , Monitores de Aptidão Física , Humanos , Pessoa de Meia-Idade , Aplicativos Móveis , Estudos Multicêntricos como Assunto , Intervalo Livre de Progressão , Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Smartphone , Inquéritos e Questionários/estatística & dados numéricos
8.
BMC Biol ; 16(1): 65, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895328

RESUMO

BACKGROUND: Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses. RESULTS: Unexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O2 and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise. CONCLUSIONS: Therefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson's disease.


Assuntos
Metabolismo Energético/genética , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/fisiologia , Adaptação Fisiológica/genética , Animais , Hipóxia Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Atrofia Muscular/genética , Transdução de Sinais , Fatores de Transcrição/genética
9.
Sci Rep ; 7(1): 14000, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-29070788

RESUMO

In stroke patients, loss of skeletal muscle mass leads to prolonged weakness and less efficient rehabilitation. We previously showed that expression of myostatin, a master negative regulator of skeletal muscle mass, was strongly increased in skeletal muscle in a mouse model of stroke. We therefore tested the hypothesis that myostatin inhibition would improve recovery of skeletal muscle mass and function after cerebral ischemia. Cerebral ischemia (45 minutes) was induced by intraluminal right middle cerebral artery occlusion (MCAO). Swiss male mice were randomly assigned to Sham-operated mice (n = 10), MCAO mice receiving the vehicle (n = 15) and MCAO mice receiving an anti-myostatin PINTA745 (n = 12; subcutaneous injection of 7.5 mg.kg-1 PINTA745 immediately after surgery, 3, 7 and 10 days after MCAO). PINTA745 reduced body weight loss and improved body weight recovery after cerebral ischemia, as well as muscle strength and motor function. PINTA745 also increased muscle weight recovery 15 days after cerebral ischemia. Mechanistically, the better recovery of skeletal muscle mass in PINTA745-MCAO mice involved an increased expression of genes encoding myofibrillar proteins. Therefore, an anti-myostatin strategy can improve skeletal muscle recovery after cerebral ischemia and may thus represent an interesting strategy to combat skeletal muscle loss and weakness in stroke patients.


Assuntos
Desenvolvimento Muscular/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Miostatina/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Acidente Vascular Cerebral/complicações
10.
Sci Rep ; 7(1): 10866, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883493

RESUMO

Sepsis induced loss of muscle mass and function contributes to promote physical inactivity and disability in patients. In this experimental study, mice were sacrificed 1, 4, or 7 days after cecal ligation and puncture (CLP) or sham surgery. When compared with diaphragm, locomotor muscles were more prone to sepsis-induced muscle mass loss. This could be attributed to a greater activation of ubiquitin-proteasome system and an increased myostatin expression. Thus, this study strongly suggests that the contractile activity pattern of diaphragm muscle confers resistance to atrophy compared to the locomotor gastrocnemius muscle. These data also suggest that a strategy aimed at preventing the activation of catabolic pathways and preserving spontaneous activity would be of interest for the treatment of patients with sepsis-induced neuromyopathy.


Assuntos
Autofagia , Lisossomos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitina/metabolismo , Animais , Atrofia , Biomarcadores , Citocinas/metabolismo , Diafragma/metabolismo , Diafragma/patologia , Diafragma/fisiopatologia , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Fosforilação , Sepse/etiologia
11.
Am J Physiol Cell Physiol ; 312(3): C209-C221, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003225

RESUMO

Over the last several years, converging lines of evidence have indicated that miR-206 plays a pivotal role in promoting muscle differentiation and regeneration, thereby potentially impacting positively on the progression of neuromuscular disorders, including Duchenne muscular dystrophy (DMD). Despite several studies showing the regulatory function of miR-206 on target mRNAs in skeletal muscle cells, the effects of overexpression of miR-206 in dystrophic muscles remain to be established. Here, we found that miR-206 overexpression in mdx mouse muscles simultaneously targets multiple mRNAs and proteins implicated in satellite cell differentiation, muscle regeneration, and at the neuromuscular junction. Overexpression of miR-206 also increased the levels of several muscle-specific mRNAs/proteins, while enhancing utrophin A expression at the sarcolemma. Finally, we also observed that the increased expression of miR-206 in dystrophin-deficient mouse muscle decreased the production of proinflammatory cytokines and infiltration of macrophages. Taken together, our results show that miR-206 acts as a pleiotropic regulator that targets multiple key mRNAs and proteins expected to provide beneficial adaptations in dystrophic muscle, thus highlighting its therapeutic potential for DMD.


Assuntos
Adaptação Fisiológica , Citocinas/metabolismo , Macrófagos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Regulação da Expressão Gênica , Macrófagos/patologia , Masculino , Camundongos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Ligação Proteica , Distribuição Tecidual
12.
J Appl Physiol (1985) ; 119(4): 342-51, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26112243

RESUMO

Skeletal muscle atrophy is commonly associated with immobilization, ageing, and catabolic diseases such as diabetes and cancer cachexia. Epigenetic regulation of gene expression resulting from chromatin remodeling through histone acetylation has been implicated in muscle disuse. The present work was designed to test the hypothesis that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, would partly counteract unloading-induced muscle atrophy. Soleus muscle atrophy (-38%) induced by 14 days of rat hindlimb suspension was reduced to only 25% under TSA treatment. TSA partly prevented the loss of type I and IIa fiber size and reversed the transitions of slow-twitch to fast-twitch fibers in soleus muscle. Unloading or TSA treatment did not affect myostatin gene expression and follistatin protein. Soleus protein carbonyl content remained unchanged, whereas the decrease in glutathione vs. glutathione disulfide ratio and the increase in catalase activity (biomarkers of oxidative stress) observed after unloading were abolished by TSA treatment. The autophagy-lysosome pathway (Bnip3 and microtubule-associated protein 1 light chain 3 proteins, Atg5, Gabarapl1, Ulk1, and cathepsin B and L mRNA) was not activated by unloading or TSA treatment. However, TSA suppressed the rise in muscle-specific RING finger protein 1 (MuRF1) caused by unloading without affecting the forkhead box (Foxo3) transcription factor. Prevention of muscle atrophy by TSA might be due to the regulation of the skeletal muscle atrophy-related MuRF1 gene. Our findings suggest that TSA may provide a novel avenue to treat unloaded-induced muscle atrophy.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Elevação dos Membros Posteriores , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/enzimologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/enzimologia , Fibras Musculares de Contração Lenta/patologia , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Atrofia Muscular/enzimologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fenótipo , RNA Mensageiro/metabolismo , Ratos Wistar , Fatores de Tempo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Cima
13.
J Appl Physiol (1985) ; 118(8): 1040-9, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25701004

RESUMO

Exercise training (ExTr) is largely used to improve functional capacity in patients with chronic obstructive pulmonary disease (COPD). However, ExTr only partially restores muscle function in patients with COPD, suggesting that confounding factors may limit the efficiency of ExTr. In the present study, we hypothesized that skeletal muscle adaptations triggered by ExTr could be compromised in hypoxemic patients with COPD. Vastus lateralis muscle biopsies were obtained from patients with COPD who were either normoxemic (n = 15, resting arterial Po2 = 68.5 ± 1.5 mmHg) or hypoxemic (n = 8, resting arterial Po2 = 57.0 ± 1.0 mmHg) before and after a 2-mo ExTr program. ExTr induced a significant increase in exercise capacity both in normoxemic and hypoxemic patients with COPD. However, ExTr increased citrate synthase and lactate dehydrogenase enzyme activities only in skeletal muscle of normoxemic patients. Similarly, muscle fiber cross-sectional area and capillary-to-fiber ratio were increased only in patients who were normoxemic. Expression of atrogenes (MuRF1, MAFbx/Atrogin-1) and autophagy-related genes (Beclin, LC3, Bnip, Gabarapl) remained unchanged in both groups. Phosphorylation of Akt (Ser473), GSK-3ß (Ser9), and p70S6k (Thr389) was nonsignificantly increased in normoxemic patients in response to ExTr, but it was significantly decreased in hypoxemic patients. We further showed on C2C12 myotubes that hypoxia completely prevented insulin-like growth factor-1-induced phosphorylation of Akt, GSK-3ß, and p70S6K. Together, our observations suggest a role for hypoxemia in the adaptive response of skeletal muscle of patients with COPD in an ExTr program.


Assuntos
Hipóxia/enzimologia , Condicionamento Físico Humano/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/complicações , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Citrato (si)-Sintase/metabolismo , Feminino , Humanos , Hipertrofia , Hipóxia/patologia , Hipóxia/fisiopatologia , Fator de Crescimento Insulin-Like I/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/patologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
14.
Cancer Res ; 74(24): 7344-56, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25336187

RESUMO

Cachexia is a muscle-wasting syndrome that contributes significantly to morbidity and mortality of many patients with advanced cancers. However, little is understood about how the severe loss of skeletal muscle characterizing this condition occurs. In the current study, we tested the hypothesis that the muscle protein myostatin is involved in mediating the pathogenesis of cachexia-induced muscle wasting in tumor-bearing mice. Myostatin gene inactivation prevented the severe loss of skeletal muscle mass induced in mice engrafted with Lewis lung carcinoma (LLC) cells or in Apc(Min) (/+) mice, an established model of colorectal cancer and cachexia. Mechanistically, myostatin loss attenuated the activation of muscle fiber proteolytic pathways by inhibiting the expression of atrophy-related genes, MuRF1 and MAFbx/Atrogin-1, along with autophagy-related genes. Notably, myostatin loss also impeded the growth of LLC tumors, the number and the size of intestinal polyps in Apc(Min) (/+) mice, thus strongly increasing survival in both models. Gene expression analysis in the LLC model showed this phenotype to be associated with reduced expression of genes involved in tumor metabolism, activin signaling, and apoptosis. Taken together, our results reveal an essential role for myostatin in the pathogenesis of cancer cachexia and link this condition to tumor growth, with implications for furthering understanding of cancer as a systemic disease.


Assuntos
Caquexia/genética , Carcinoma Pulmonar de Lewis/genética , Atrofia Muscular/genética , Miostatina/genética , Animais , Caquexia/complicações , Caquexia/patologia , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/patologia , Inativação Gênica , Humanos , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/complicações , Atrofia Muscular/patologia , Miostatina/antagonistas & inibidores
15.
Int J Biochem Cell Biol ; 45(11): 2444-55, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23916784

RESUMO

Administration of ß2-agonists triggers skeletal muscle anabolism and hypertrophy. We investigated the time course of the molecular events responsible for rat skeletal muscle hypertrophy in response to 1, 3 and 10 days of formoterol administration (i.p. 2000µg/kg/day). A marked hypertrophy of rat tibialis anterior muscle culminated at day 10. Phosphorylation of Akt, ribosomal protein S6, 4E-BP1 and ERK1/2 was increased at day 3, but returned to control level at day 10. This could lead to a transient increase in protein translation and could explain previous studies that reported increase in protein synthesis following ß2-agonist administration. Formoterol administration was also associated with a significant reduction in MAFbx/atrogin-1 mRNA level (day 3), suggesting that formoterol can also affect protein degradation of MAFbx/atrogin1 targeted substrates, including MyoD and eukaryotic initiation factor-3f (eIF3-f). Surprisingly, mRNA level of autophagy-related genes, light chain 3 beta (LC3b) and gamma-aminobutyric acid receptor-associated protein-like 1 (Gabarapl1), as well as lysosomal hydrolases, cathepsin B and cathepsin L, was significantly and transiently increased after 1 and/or 3 days, suggesting that autophagosome formation would be increased in response to formoterol administration. However, this has to be relativized since the mRNA level of Unc-51-like kinase1 (Ulk1), BCL2/adenovirus E1B interacting protein3 (Bnip3), and transcription factor EB (TFEB), as well as the protein content of Ulk1, Atg13, Atg5-Atg12 complex and p62/Sqstm1 remained unchanged or was even decreased in response to formoterol administration. These results demonstrate that the effects of formoterol are mediated, in part, through the activation of Akt-mTOR pathway and that other signaling pathways become more important in the regulation of skeletal muscle mass with chronic administration of ß2-agonists.


Assuntos
Autofagia/efeitos dos fármacos , Etanolaminas/farmacologia , Lisossomos/metabolismo , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Etanolaminas/administração & dosagem , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fumarato de Formoterol , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertrofia , Lisossomos/efeitos dos fármacos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ubiquitina/metabolismo
16.
Int J Biochem Cell Biol ; 45(10): 2309-21, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23845739

RESUMO

ß2-Agonists are traditionally used for the treatment of bronchospasm associated with asthma and the treatment of symptomatic patients with COPD. However, ß2-agonists are also powerful anabolic agents that trigger skeletal muscle hypertrophy. Investigating the effects of ß2-agonists in skeletal muscle over the past 30 years in different animal models has led to the identification of potential therapeutic applications in several muscle wasting disorders, including neuromuscular diseases, cancer cachexia, sepsis or thermal injury. In these conditions, numerous studies indicate that ß2-agonists can attenuate and/or reverse the decrease in skeletal muscle mass and associated weakness in animal models of muscle wasting but also in human patients. The purpose of this review is to present the biological and clinical significance of ß2-agonists for the treatment of skeletal muscle wasting. After the description of the molecular mechanisms involved in the hypertrophy and anti-atrophy effect of ß2-agonists, we will review the anti-atrophy effects of ß2-agonist administration in several animal models and human pathologies associated with or leading to skeletal muscle wasting. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Assuntos
Agonistas Adrenérgicos beta/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Doenças Musculares/tratamento farmacológico , Animais , Humanos , Atrofia Muscular/patologia , Doenças Musculares/patologia
17.
PLoS One ; 7(9): e43490, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984430

RESUMO

Sirtuin 1 (SIRT1), a NAD(+)-dependent protein deacetylase, has emerged as a main determinant of whole body homeostasis in mammals by regulating a large spectrum of transcriptional regulators in metabolically relevant tissue such as liver, adipose tissue and skeletal muscle. Sterol regulatory element binding protein (SREBP)-1c is a transcription factor that controls the expression of genes related to fatty acid and triglyceride synthesis in tissues with high lipid synthesis rates such as adipose tissue and liver. Previous studies indicate that SIRT1 can regulate the expression and function of SREBP-1c in liver. In the present study, we determined whether SIRT1 regulates SREBP-1c expression in skeletal muscle. SREBP-1c mRNA and protein levels were decreased in the gastrocnemius muscle of mice harboring deletion of the catalytic domain of SIRT1 (SIRT1(Δex4/Δex4) mice). By contrast, adenoviral expression of SIRT1 in human myotubes increased SREBP-1c mRNA and protein levels. Importantly, SREBP-1c promoter transactivation, which was significantly increased in response to SIRT1 overexpression by gene electrotransfer in skeletal muscle, was completely abolished when liver X receptor (LXR) response elements were deleted. Finally, our in vivo data from SIRT1(Δex4/Δex4) mice and in vitro data from human myotubes overexpressing SIRT1 show that SIRT1 regulates LXR acetylation in skeletal muscle cells. This suggests a possible mechanism by which the regulation of SREBP-1c gene expression by SIRT1 may require the deacetylation of LXR transcription factors.


Assuntos
Regulação da Expressão Gênica , Músculo Esquelético/metabolismo , Receptores Nucleares Órfãos/metabolismo , Sirtuína 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Acetilação , Animais , Humanos , Receptores X do Fígado , Masculino , Camundongos , Células Musculares/metabolismo , Músculo Esquelético/citologia , Regiões Promotoras Genéticas/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ativação Transcricional/genética
18.
Am J Physiol Regul Integr Comp Physiol ; 298(6): R1659-66, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237300

RESUMO

Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this regulation is still debated. Our general aim was to determine the molecular mechanisms involved in the regulation of skeletal muscle mass after exposure to chronic hypoxia and to test the biological relevance of our findings into the clinical context of COPD. Expression of positive and negative regulators of skeletal muscle mass were explored 1) in the soleus muscle of rats exposed to severe hypoxia (6,300 m) for 3 wk and 2) in vastus lateralis muscle of nonhypoxemic and hypoxemic COPD patients. In rodents, we observed a marked inhibition of the mammalian target of rapamycin (mTOR) pathway together with a strong increase in regulated in development and DNA damage response 1 (REDD1) expression and in its association with 14-3-3, a mechanism known to downregulate the mTOR pathway. Importantly, REDD1 overexpression in vivo was sufficient to cause skeletal muscle fiber atrophy in normoxia. Finally, the comparative analysis of skeletal muscle in hypoxemic vs. nonhypoxemic COPD patients confirms that hypoxia causes an inhibition of the mTOR signaling pathway. We thus identify REDD1 as a negative regulator of skeletal muscle mass during chronic hypoxia. Translation of this fundamental knowledge into the clinical investigation of COPD shows the interest to develop therapeutic strategies aimed at inhibiting REDD1.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirolimo/metabolismo , Animais , Atrofia/complicações , Atrofia/metabolismo , Atrofia/patologia , Regulação para Baixo , Humanos , Hipóxia/complicações , Hipóxia/metabolismo , Hipóxia/patologia , Masculino , Mamíferos/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Ratos , Ratos Wistar , Transdução de Sinais
19.
PLoS One ; 5(1): e8637, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20072609

RESUMO

BACKGROUND: Mitochondria can sense signals linked to variations in energy demand to regulate nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. Rhabdomyosarcoma cells are characterized by their failure to both irreversibly exit the cell cycle and complete myogenic differentiation. However, it is currently unknown whether mitochondria are involved in the failure of rhabdomyosarcoma cells to differentiate. METHODOLOGY/PRINCIPAL FINDINGS: Mitochondrial biogenesis and metabolism were studied in rat L6E9 myoblasts and R1H rhabdomyosacoma cells during the cell cycle and after 36 hours of differentiation. Using a combination of flow cytometry, polarographic and molecular analyses, we evidenced a marked decrease in the cardiolipin content of R1H cells cultured in growth and differentiation media, together with a significant increase in the content of mitochondrial biogenesis factors and mitochondrial respiratory chain proteins. Altogether, these data indicate that the mitochondrial inner membrane composition and the overall process of mitochondrial biogenesis are markedly altered in R1H cells. Importantly, the dysregulation of protein-to-cardiolipin ratio was associated with major deficiencies in both basal and maximal mitochondrial respiration rates. This deficiency in mitochondrial respiration probably contributes to the inability of R1H cells to decrease mitochondrial H2O2 level at the onset of differentiation. CONCLUSION/SIGNIFICANCE: A defect in the regulation of mitochondrial biogenesis and mitochondrial metabolism may thus be an epigenetic mechanism that may contribute to the tumoral behavior of R1H cells. Our data underline the importance of mitochondria in the regulation of myogenic differentiation.


Assuntos
Mitocôndrias/metabolismo , Rabdomiossarcoma/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Linhagem Celular Tumoral , Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Microscopia de Fluorescência , Ratos , Rabdomiossarcoma/patologia
20.
J Cell Biol ; 187(6): 859-74, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-20008564

RESUMO

Mammalian target of rapamycin (mTOR) is a key regulator of cell growth that associates with raptor and rictor to form the mTOR complex 1 (mTORC1) and mTORC2, respectively. Raptor is required for oxidative muscle integrity, whereas rictor is dispensable. In this study, we show that muscle-specific inactivation of mTOR leads to severe myopathy, resulting in premature death. mTOR-deficient muscles display metabolic changes similar to those observed in muscles lacking raptor, including impaired oxidative metabolism, altered mitochondrial regulation, and glycogen accumulation associated with protein kinase B/Akt hyperactivation. In addition, mTOR-deficient muscles exhibit increased basal glucose uptake, whereas whole body glucose homeostasis is essentially maintained. Importantly, loss of mTOR exacerbates the myopathic features in both slow oxidative and fast glycolytic muscles. Moreover, mTOR but not raptor and rictor deficiency leads to reduced muscle dystrophin content. We provide evidence that mTOR controls dystrophin transcription in a cell-autonomous, rapamycin-resistant, and kinase-independent manner. Collectively, our results demonstrate that mTOR acts mainly via mTORC1, whereas regulation of dystrophin is raptor and rictor independent.


Assuntos
Proteínas de Transporte/metabolismo , Distrofina/metabolismo , Músculo Esquelético/enzimologia , Distrofia Muscular Animal/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Fatores Etários , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Células Cultivadas , Distrofina/genética , Eletroporação , Metabolismo Energético , Ativação Enzimática , Feminino , Glucose/metabolismo , Glicogênio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/enzimologia , Contração Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia , Mutação , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina , Ratos , Proteína Regulatória Associada a mTOR , Índice de Gravidade de Doença , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Transdução Genética , Utrofina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA