Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Pharmacol Rep ; 76(3): 572-584, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38664334

RESUMO

BACKGROUND: Essential phospholipids (EPL) are hepatoprotective. METHODS: The effects on interleukin (IL)-6 and -8 secretion and on certain lipid-metabolizing enzymes of non-cytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), polyenylphosphatidylcholine (PPC), and phosphatidylinositol (PtdIns) (both at 0.1 and 1 mg/ml), compared with untreated controls, were assessed in human hepatocyte cell lines (HepG2, HepaRG, and steatotic HepaRG). RESULTS: Lipopolysaccharide (LPS)-induced IL-6 secretion was significantly decreased in HepaRG cells by most phospholipids, and significantly increased in steatotic HepaRG cells with at least one concentration of EPL and PtdIns. LPS-induced IL-8 secretion was significantly increased in HepaRG and steatotic HepaRG cells with all phospholipids. All phospholipids significantly decreased amounts of fatty acid synthase in steatotic HepaRG cells and the amounts of acyl-CoA oxidase in HepaRG cells. Amounts of lecithin cholesterol acyltransferase were significantly decreased in HepG2 and HepaRG cells by most phospholipids, and significantly increased with 0.1 mg/ml PPC (HepaRG cells) and 1 mg/ml PtdIns (steatotic HepaRG cells). Glucose-6-phosphate dehydrogenase activity was unaffected by any phospholipid in any cell line. CONCLUSIONS: EPL, PPC, and PtdIns impacted the secretion of pro-inflammatory cytokines and affected amounts of several key lipid-metabolizing enzymes in human hepatocyte cell lines. Such changes may help liver function improvement, and provide further insights into the EPL's mechanism of action.


Assuntos
Hepatócitos , Metabolismo dos Lipídeos , Fosfolipídeos , Humanos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Linhagem Celular
2.
Front Pharmacol ; 15: 1365051, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572427

RESUMO

Membrane transporters playing an important role in the passage of drugs, metabolites and nutrients across the membranes of the brain cells have been shown to be involved in pathogenesis of Alzheimer's disease (AD). However, little is known about sex-specific changes in transporter protein expression at the brain in AD. Here, we investigated sex-specific alterations in protein expression of three ATP-binding cassette (ABC) and five solute carriers (SLC) transporters in the prefrontal cortex of a commonly used model of familial AD (FAD), 5xFAD mice. Sensitive liquid chromatography tandem mass spectrometry-based quantitative targeted absolute proteomic analysis was applied for absolute quantification of transporter protein expression. We compared the changes in transporter protein expressions in 7-month-old male and female 5xFAD mice versus sex-matched wild-type mice. The study revealed a significant sex-specific increase in protein expression of ABCC1 (p = 0.007) only in male 5xFAD mice as compared to sex-matched wild-type animals. In addition, the increased protein expression of glucose transporter 1 (p = 0.01), 4F2 cell-surface antigen heavy chain (p = 0.01) and long-chain fatty acid transport protein 1 (p = 0.02) were found only in female 5xFAD mice as compared to sex-matched wild-type animals. Finally, protein expression of alanine/serine/cysteine/threonine transporter 1 was upregulated in both male (p = 0.02) and female (p = 0.002) 5xFAD mice. The study provides important information about sex-specific changes in brain cortical transporter expression in 5xFAD mice, which will facilitate drug development of therapeutic strategies for AD targeting these transporters and drug delivery research.

3.
Environ Toxicol Pharmacol ; 108: 104451, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648870

RESUMO

Aluminum is the third most common element on Earth´s crust and despite its wide use in our workaday life it has been associated with several health risks after overexposure. In the present study the impact of aluminum salts upon ABC transporter activity was studied in the P-GP-expressing human blood-brain barrier cell line hCMEC/D3, in MDCKII cells overexpressing BCRP and MRP2, respectively, and in freshly isolated, functionally intact kidney tubules from Atlantic killifish (Fundulus heteroclitus), which express the analog ABC transporters, P-gp, Bcrp and Mrp2. In contrast to previous findings with heavy metals salts (cadmium(II) chloride or mercury(II) chloride), which have a strong inhibitory effect on ABC transporter activity, or zinc(II) chloride and sodium arsenite, which have a stimulatory effect upon ABC transport function, the results indicate no modulatory effect of aluminum salts on the efflux activity of the human ABC transporters P-GP, BCRP and MRP2 nor on the analog transporters P-gp, Bcrp and Mrp2.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38087181

RESUMO

The blood-brain barrier (BBB) poses a major obstacle in the treatment of all types of central nervous system (CNS) diseases. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach by downregulating disease-related genes via RNA interference. However, the BBB is a formidable barrier for macromolecules such as nucleic acids. In an effort to develop a brain-targeted strategy for siRNA delivery systems formed by electrostatic interactions with cationic polymers (polyplexes (PXs)), we investigated the suitability of the well-known surfactant-based approach for Apolipoprotein E (ApoE)-functionalization of nanoparticles (NPs). The aim of this present work was to investigate if ApoE coating of siRNA PXs formed with cationic branched 25-kDa poly(ethyleneimine) (b-PEI) and nylon-3 polymers without or after precoating with polysorbate 80 (PS 80) would promote successful delivery across the BBB. We utilized highly hydrophobic NM0.2/CP0.8 nylon-3 polymers to evaluate the effects of hydrophobic cyclopentyl (CP) subunits on ApoE binding efficacy and observed successful ApoE binding with and without PS 80 precoating to the nylon-3 but not the PEI polyplexes. Accordingly, ApoE-coated nylon-3 polyplexes showed significantly increased uptake and gene silencing in U87 glioma cells but no benefit in vivo. In conclusion, further optimization of ApoE-functionalized polyplexes and more sophisticated in vitro models are required to achieve more successful in vitro-in vivo translation in future approaches.

5.
J Control Release ; 360: 613-629, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437848

RESUMO

The blood-brain barrier (BBB) is a highly selective biological barrier that represents a major bottleneck in the treatment of all types of central nervous system (CNS) disorders. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach, e.g., for brain tumors, by downregulating brain tumor-related genes and inhibiting tumor growth via RNA interference. In an effort to develop efficient siRNA nanocarriers for crossing the BBB, we utilized polyethyleneimine (PEI) polymers hydrophobically modified with either stearic-acid (SA) or dodecylacrylamide (DAA) subunits and evaluated their suitability for delivering siRNA across the BBB in in vitro and in vivo BBB models depending on their structure. Physicochemical characteristics of siRNA-polymer complexes (polyplexes (PXs)), e.g., particle size and surface charge, were measured by dynamic light scattering and laser Doppler anemometry, whereas siRNA condensation ability of polymers and polyplex stability was evaluated by spectrophotometric methods. The composition of the biomolecule corona that absorbs on polyplexes upon encountering physiological fluids was investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method. Cellular internalization abilities of PXs into brain endothelial cells (hCMEC/D3) was confirmed, and a BBB permeation assay using a human induced pluripotent stem cell (hiPSC)-derived BBB model revealed similar abilities to cross the BBB for all formulations under physiological conditions. However, biodistribution studies of radiolabeled PXs in mice were inconsistent with in vitro results as the detected amount of radiolabeled siRNA in the brain delivered with PEI PXs was higher compared to PEI-SA PXs. Taken together, PEI PXs were shown to be a suitable nanocarrier to deliver small amounts of siRNA across the BBB into the brain but more sophisticated human BBB models that better represent physiological conditions and biodistribution are required to provide highly predictive in vitro data for human CNS drug development in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Polietilenoimina , Humanos , Animais , Camundongos , Polietilenoimina/química , RNA Interferente Pequeno , Barreira Hematoencefálica/metabolismo , Distribuição Tecidual , Células Endoteliais/metabolismo , RNA de Cadeia Dupla , Polímeros/química , Permeabilidade
6.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-37259420

RESUMO

The human epidermal growth factor receptor (EGFR) is closely related to several cancer-promoting processes and overexpressed on a variety of tumor types, rendering it an important target structure for the imaging and therapy of several malignancies. To date, approaches to develop peptidic radioligands able to specifically address and visualize EGFR-positive tumors have been of limited success. Most of the attempts were based on the lead GE11, as this peptide was previously described to be a highly potent EGFR-specific agent. However, since it has recently been shown that GE11 exhibits an insufficient affinity to the EGFR in monomeric form to be suitable as a basis for the development of tracers based on it, in the present work we investigated which other peptides might be suitable as lead structures for the development of EGFR-specific peptidic radiotracers. For this purpose, we developed 68Ga-labeled radioligands based on the peptides D4, P1, P2, CPP, QRH, EGBP and Pep11, having been described before as EGFR-specific. In addition, we also tested three truncated versions of the endogenous EGFR ligand hEGF (human epidermal growth factor) with respect to their ability to specifically target the EGFR with high affinity. Therefore, chelator-modified labeling precursors of the mentioned peptides were synthesized, radiolabeled with 68Ga and the obtained radioligands were evaluated for their hydrophilicity/lipophilicity, stability against degradation by human serum peptidases, in vitro tumor cell uptake, and receptor affinity in competitive displacement experiments on EGFR-positive A431 cells. Although all NODA-GA-modified (NODA-GA: (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid) labeling precursors could be obtained more or less efficient in yields between 5 and 74%, the 68Ga-radiolabeling proved to be unsuccessful for two of the three truncated versions of hEGF ([68Ga]Ga-8 and [68Ga]Ga-9), producing several side-products. For the other agents [68Ga]Ga-1-[68Ga]Ga-7, [68Ga]Ga-10 and [68Ga]Ga-11, high radiochemical yields and purities of ≥98% and molar activities of up to 114 GBq/µmol were obtained. In the assay investigating the radiopeptide susceptibilities against serum peptidase degradation, the EGBP-based agent demonstrated a limited stability with a half-life of only 66.4 ± 3.0 min, whereas the other tracers showed considerably higher stabilities of up to an 8000 min half-life. Finally, all radiotracer candidates were evaluated in terms of tumor cell internalization and receptor binding potential on EGFR-positive A431 cell. In these experiments, all developed agents failed to show an EGFR-specific tumor cell uptake or a relevant EGFR-affinity. By contrast, the positive controls tested under identical conditions, [125I]I-hEGF and hEGF demonstrated the expected high EGFR-specific tumor cell uptake (33.6% after 1 h, being reduced to 1.9% under blocking conditions) and affinity (IC50 value of 15.2 ± 3.3 nM). Thus, these results indicate that none of the previously described peptidic agents developed for EGFR targeting appears to be a reasonable choice as a lead structure for the development of radiopeptides for targeting of EGFR-positive tumors. Likewise, the tested truncated variants of the endogenous hEGF do not seem to be promising alternatives for this purpose.

7.
J Pharm Sci ; 112(9): 2581-2590, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37220829

RESUMO

Triple negative breast cancer (TNBC) is among the most aggressive and deadly cancer subtypes. Intra-tumoral hypoxia is associated with aggressiveness and drug resistance in TNBC. One of the underlying mechanisms of hypoxia-induced drug resistance is the elevated expression of efflux transporters such as breast cancer resistant protein (ABCG2). In the present study, we investigated the possibility of ameliorating ABCG2-mediated drug resistance in hypoxic TNBC cells by monoacylglycerol lipase (MAGL) inhibition and the consequent downregulation of ABCG2 expression. The effect of MAGL inhibition on ABCG2 expression, function, and efficacy of regorafenib, an ABCG2 substrate was investigated in cobalt dichloride (CoCl2) induced pseudohypoxic TNBC (MDA-MB-231) cells, using quantitative targeted absolute proteomics, qRT-PCR, anti-cancer drug accumulation in the cells, cell invasiveness and resazurin-based cell viability assays. Our results showed that hypoxia-induced ABCG2 expression led to low regorafenib intracellular concentrations, reduced the anti-invasiveness efficacy, and elevated half maximal inhibitory concentration (IC50) of regorafenib in vitro MDA-MB-231 cells. MAGL inhibitor, JJKK048, reduced ABCG2 expression, increased regorafenib cell accumulation, which led to higher regorafenib efficacy. In conclusion, hypoxia-induced regorafenib resistance due to ABCG2 over-expression in TNBC cells can be ameliorated by MAGL inhibition.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/farmacologia , Linhagem Celular Tumoral , Hipóxia , Resistencia a Medicamentos Antineoplásicos , Proteínas de Neoplasias/metabolismo
8.
Pharmaceutics ; 15(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36839686

RESUMO

Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.

9.
Anticancer Res ; 43(3): 1031-1041, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36854510

RESUMO

BACKGROUND/AIM: Metal-containing compounds (e.g., platinum complexes) belong to the standard armamentarium of cancer chemotherapy. Copper N-(2-hydroxy acetophenone) glycinate (CuNG) exerts anticancer activity in vitro and in vivo and modulates drug resistance related to glutathione or P-glycoprotein. The potential of CuNG to interact with ATP-binding cassette (ABC) transporters has not been fully explored yet. This study focused on the modulatory effects of CuNG on four ABC transporters (MRP1, MRP1, BCRP, and P-glycoprotein). MATERIALS AND METHODS: Cell viability, drug uptake and ABC transporter expression were measured by resazurin assays, flow cytometry, and ELISA in HL60AR, MDCKII-hBCRP, and Caco-2 cells. RESULTS: CuNG increased doxorubicin sensitivity of MRP1-over-expressing HL60AR with a similar efficacy as the control MRP1 inhibitor MK571. CuNG also increased MRP1's efflux activity. Comparable results were obtained with MDCKII cells over-expressing hBCRP. ELISA assays revealed that the expression of MRP1 in HL60AR cells and BCRP in MDCKII- cells was predominant but other ABC-transporters were also expressed at lower levels. Caco-2 cells expressed high levels of MRP2, but MRP1, BCRP, and P-glycoprotein were also expressed. In contrast to the two former cell lines, CuNG increased doxorubicin resistance and decreased efflux activity in Caco-2 cells. CONCLUSION: CuNG exerted different modulatory activities towards ABC-transporter-expressing cells. While CuNG-mediated ABC-transporter inhibition may improve tumor chemotherapy (like in HL60AR and MDCKII-hBCRP cells), CuNG-mediated enhanced ABC-transport (like in Caco-2 cells) may be a new strategy to ameliorate inflammatory diseases associated with decreased ABC-transporter expression such as ulcerative colitis.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Acetofenonas , Compostos de Cobre Orgânico , Humanos , Acetofenonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2/efeitos dos fármacos , Cobre/farmacologia , Doxorrubicina/farmacologia , Proteínas de Neoplasias , Compostos de Cobre Orgânico/farmacologia
10.
ACS Omega ; 8(2): 2793-2807, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687076

RESUMO

Radiolabeled heterobivalent peptidic ligands (HBPLs) are a highly promising compound class for the sensitive and specific visualization of tumors as they often exhibit superior properties compared to their monospecific counterparts and are able to concomitantly or complementarily address different receptor types. The combination of two receptor-specific agents targeting the epidermal growth factor receptor (EGFR) and the integrin αvß3 in one HBPL would constitute a synergistic combination of binding motifs as these two receptor types are concurrently overexpressed on several human tumor types and are closely associated with disease progression and metastasis. Here, we designed and synthesized two heterobivalent radioligands consisting of the EGFR-specific peptide GE11 and αvß3-specific cyclic RGD peptides, bearing a (1,4,7-triazacyclononane-4,7-diyl)diacetic acid-1-glutaric acid chelator for efficient radiolabeling and linkers of different lengths between both peptides. Both HBPLs were radiolabeled with 68Ga3+ in high radiochemical yields, purities of 96-99%, and molar activities of 36-88 GBq/µmol. [68Ga]Ga-1 and [68Ga]Ga-2 were evaluated for their log D(7.4) and stability toward degradation by human serum peptidases, showing a high hydrophilicity for both agents of -3.07 ± 0.01 and -3.44 ± 0.08 as well as a high stability toward peptidase degradation in human serum with half-lives of 272 and 237 min, respectively. Further on, the in vitro receptor binding profiles of both HBPLs to the target EGF and integrin αvß3 receptors were assessed on EGFR-positive A431 and αvß3-positive U87MG cells. Finally, we investigated the in vivo pharmacokinetics of HBPL [68Ga]Ga-1 by positron emission tomography/computed tomography imaging in A431 tumor-bearing xenograft mice to assess its potential for the receptor-specific visualization of EGFR- and/or αvß3-expressing tumors. In these experiments, [68Ga]Ga-1 demonstrated a tumor uptake of 2.79 ± 1.66% ID/g, being higher than in all other organs and tissues apart from kidneys and blood at 2 h p.i. Receptor blocking studies revealed the observed tumor uptake to be solely mediated by integrin αvß3, whereas no contribution of the GE11 peptide sequence to tumor uptake via the EGFR could be determined. Thus, the approach to develop radiolabeled EGFR- and integrin αvß3-bispecific HBPLs is in general feasible although another peptide lead structure than GE11 should be used as the basis for the EGFR-specific part of the agents.

11.
ChemMedChem ; 18(1): e202200495, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36259364

RESUMO

[68 Ga]Ga3+ can be introduced into receptor-specific peptidic carriers via different chelators to obtain radiotracers for Positron Emission Tomography imaging and the chosen chelating agent considerably influences the in vivo pharmacokinetics of the corresponding radiopeptides. A chelator that should be a valuable alternative to established chelating agents for 68 Ga-radiolabeling of peptides would be a backbone-functionalized variant of the chelator CB-DO2A. Here, the bifunctional cross-bridged chelating agent CB-DO2A-GA was developed and compared to the established chelators DOTA, NODA-GA and DOTA-GA. For this purpose, CB-DO2A-GA(tBu)2 was introduced into the peptide Tyr3 -octreotate (TATE) and in direct comparison to the corresponding DOTA-, NODA-GA-, and DOTA-GA-modified TATE analogs, CB-DO2A-GA-TATE required harsher reaction conditions for 68 Ga-incorporation. Regarding the hydrophilicity profile of the resulting radiopeptides, a decrease in hydrophilicity from [68 Ga]Ga-DOTA-GA-TATE (logD(7.4) of -4.11±0.11) to [68 Ga]Ga-CB-DO2A-GA-TATE (-3.02±0.08) was observed. Assessing the stability against metabolic degradation and complex challenge, [68 Ga]Ga-CB-DO2A-GA demonstrated a very high kinetic inertness, exceeding that of [68 Ga]Ga-DOTA-GA. Therefore, CB-DO2A-GA is a valuable alternative to established chelating agents for 68 Ga-radiolabeling of peptides, especially when the formation of a very stable, positively charged 68 Ga-complex is pursued.


Assuntos
Quelantes , Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Peptídeos , Peptídeos Cíclicos/metabolismo
12.
Aquat Toxicol ; 252: 106314, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201872

RESUMO

ABC export proteins including Multidrug resistance-related protein 2 (Mrp2) serve as detoxification mechanism in renal proximal tubules due to active transport of xenobiotics and metabolic waste products into primary urine. The environmental pollutants aluminum and arsenic interfere with a multitude of regulatory mechanisms in the body and here their impact on ABC transporter function was studied. NaAsO2 but not AlCl3 rapidly stimulated Mrp2-mediated Texas Red (TR) transport in isolated renal proximal tubules from killifish, a well-established laboratory model for the determination of efflux transporter activity by utilizing fluorescent substrates for the ABC transporters of interest and confocal microscopy followed by image analysis. This observed stimulation remained unaffected by the translation inhibitor cycloheximide (CHX), but it was abrogated by antagonists and inhibitors of the endothelin receptor type B (ETB)/nitric oxide synthase (NOS)/protein kinase C (PKC) signaling pathway. NaAsO2-triggered effects were abolished as a consequence of PKCα inhibition through Gö6976 and PKCα inhibitor peptide C2-4. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY 294,002 as well as the mammalian target of rapamycin (mTOR) inhibitor rapamycin suppressed NaAsO2-triggered stimulation of luminal TR transport. In addition, the stimulatory effect of NaAsO2 was abolished by GSK650394, an inhibitor of serum- and glucocorticoid-inducible kinase 1 (SGK1), which is an important downstream target. Environmentally relevant concentrations of NaAsO2 further stimulated transport function of P-glycoprotein (P-gp), Multidrug resistance-related protein 4 (Mrp4) and Breast cancer resistance protein (Bcrp) while AlCl3 was ineffective. To our knowledge, this is the first report engaging in the impact of NaAsO2 on efflux transporter signaling and it may contribute to the understanding of defense mechanisms versus this worrying pollutant.


Assuntos
Arsênio , Fundulidae , Poluentes Químicos da Água , Animais , Fundulidae/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteína Quinase C-alfa/metabolismo , Cloretos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cloreto de Alumínio , Cicloeximida , Glucocorticoides , Arsênio/metabolismo , Proteínas de Neoplasias/metabolismo , Poluentes Químicos da Água/toxicidade , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Óxido Nítrico Sintase/metabolismo , Resíduos , Sirolimo , Mamíferos/metabolismo
13.
Pharmaceutics ; 14(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36297549

RESUMO

89Zr represents a highly favorable positron emitter for application in immuno-PET (Positron Emission Tomography) imaging. Clinically, the 89Zr4+ ion is introduced into antibodies by complexation with desferrioxamine B. However, producing complexes of limited kinetic inertness. Therefore, several new chelators for 89Zr introduction have been developed over the last years. Of these, the direct comparison of the most relevant ones for clinical translation, DFO* and 3,4,3-(LI-1,2-HOPO), is still missing. Thus, we directly compared DFO with DFO* and 3,4,3-(LI-1,2-HOPO) immunoconjugates to identify the most suitable agent stable 89Zr-complexation. The chelators were introduced into cetuximab, and an optical analysis method was developed, enabling the efficient quantification of derivatization sites per protein. The cetuximab conjugates were efficiently obtained and radiolabeled with 89Zr at 37 °C within 30 min, giving the [89Zr]Zr-cetuximab derivatives in high radiochemical yields and purities of >99% as well as specific activities of 50 MBq/mg. The immunoreactive fraction of all 89Zr-labeled cetuximab derivatives was determined to be in the range of 86.5−88.1%. In vivo PET imaging and ex vivo biodistribution studies in tumor-bearing animals revealed a comparable and significantly higher kinetic inertness for both [89Zr]Zr-3,4,3-(LI-1,2-HOPO)-cetuximab and [89Zr]Zr-DFO*-cetuximab, compared to [89Zr]Zr-DFO-cetuximab. Of these, [89Zr]Zr-DFO*-cetuximab showed a considerably more favorable pharmacokinetic profile with significantly lower liver and spleen retention than [89Zr]Zr-3,4,3-(LI-1,2-HOPO)-cetuximab. Since [89Zr]Zr-DFO* demonstrates a very high kinetic inertness, paired with a highly favorable pharmacokinetic profile of the resulting antibody conjugate, DFO* currently represents the most suitable chelator candidate for stable 89Zr-radiolabeling of antibodies and clinical translation.

14.
Lipids Health Dis ; 21(1): 91, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153592

RESUMO

BACKGROUND: Essential phospholipids (EPL) have hepatoprotective effects across many liver diseases/conditions. The impact of EPL on hepatocyte function in vitro was investigated. METHODS: Effects of noncytotoxic concentrations of EPL (0.1 and 0.25 mg/ml), and its constituents, polyenylphosphatidylcholine (PPC) and phosphatidylinositol (PI) (both at 0.1 and 1 mg/ml), on membrane fluidity, apoptosis and extracellular transport versus controls were investigated in human hepatocyte cell lines (HepG2, HepaRG, steatotic HepaRG).  RESULTS: Significantly increased membrane fluidity occurred with all 3 phospholipids (PLs) in HepG2 cultures, and with PI (1 mg/ml) in steatotic HepaRG cells. Significantly decreased tamoxifen-induced apoptosis was observed in HepG2 cells with EPL, PPC and PI. Breast cancer resistance protein (BCRP) activity was significantly increased by EPL and PI in HepG2 cells. Multidrug resistance-associated protein 2 (MRP-2) activity was unaffected by any PL in HepG2 cells, and significantly increased by EPL, PI and PPC (1 mg/ml) in HepaRG cells, and by PI (1 mg/ml) in steatotic HepaRG cells. Bile salt export protein (BSEP) activity in HepG2 cells and steatotic HepaRG cells was significantly increased by EPL (0.25 mg/ml), and PPC (both concentrations), but not by PI. The PLs had no effects on HepaRG cell BSEP activity. P-glycoprotein (P-GP) activity was significantly increased by all compounds in HepG2 cells. PI (1 mg/ml) significantly increased P-GP activity in HepaRG and steatotic HepaRG cells. CONCLUSIONS: EPL, PPC, and PI increased hepatocyte membrane fluidity, decreased apoptosis and increased hepatocellular export, all of which may improve liver function. These in-vitro investigations provide valuable insights into the mechanism of action of EPL.


Assuntos
Fígado Gorduroso , Proteínas de Neoplasias , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Apoptose , Ácidos e Sais Biliares/metabolismo , Linhagem Celular , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Fosfatidilinositóis/metabolismo , Tamoxifeno/efeitos adversos , Tamoxifeno/metabolismo
15.
ACS Omega ; 7(31): 27690-27702, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967067

RESUMO

The epidermal growth factor receptor (EGFR) is closely associated with tumor development and progression and thus an important target structure for imaging and therapy of various tumors. As a result of its important role in malignancies of various origins and the fact that antibody-based compounds targeting the EGFR have significant drawbacks in terms of in vivo pharmacokinetics, several attempts have been made within the last five years to develop peptide-based EGFR-specific radioligands based on the GE11 scaffold. However, none of these approaches have shown convincing results so far, which has been proposed to be attributed to different potential challenges associated with the GE11 lead structure: first, an aggregation of radiolabeled peptides, which might prevent their interaction with their target receptor, or second, a relatively low affinity of monomeric GE11, necessitating its conversion into a multimeric or polymeric form to achieve adequate EGFR-targeting properties. In the present work, we investigated if these aforementioned points are indeed critical and if the EGFR-targeting ability of GE11 can be improved by choosing an appropriate hydrophilic molecular design or a peptide multimer system to obtain a promising radiopeptide for the visualization of EGFR-overexpressing malignancies by positron emission tomography (PET). For this purpose, we developed several monovalent 68Ga-labeled GE11-based agents, a peptide homodimer and a homotetramer to overcome the challenges associated with GE11. The developed ligands were successfully labeled with 68Ga3+ in high radiochemical yields of ≥97% and molar activities of 41-104 GBq/µmol. The resulting radiotracers presented log D(7.4) values between -2.17 ± 0.21 and -3.79 ± 0.04 as well as a good stability in human serum with serum half-lives of 112 to 217 min for the monovalent radiopeptides and 84 and 62 min for the GE11 homodimer and homotetramer, respectively. In the following in vitro studies, none of the 68Ga-labeled radiopeptides demonstrated a considerable EGF receptor-specific uptake in EGFR-positive A431 cells. Moreover, none of the agents was able to displace [125I]I-EGF from the EGFR in competitive displacement assays in the same cell line in concentrations of up to 1 mM, whereas the endogenous receptor ligand hEGF demonstrated a high affinity of 15.2 ± 3.3 nM. These results indicate that it is not the aggregation of the GE11 sequence that seems to be the factor limiting the usefulness of the peptide as basis for radiotracer design but the limited affinity of monovalent and small homomultivalent GE11-based radiotracers to the EGFR. This highlights that the development of small-molecule GE11-based radioligands is not promising.

16.
Eur J Pharm Biopharm ; 173: 12-21, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35227855

RESUMO

The blood-brain barrier (BBB) represents one of the biggest hurdles for CNS related drug delivery, preventing permeation of most molecules, and therefore poses a major challenge for researchers in finding effective treatments for CNS diseases. The low permeability of molecules through the BBB is linked on one hand to the extreme tightness by tight junction (TJ) formation limiting the paracellular transport, and on the other hand to the presence of ATP-driven efflux pumps which actively transport unwanted compounds out of the brain. In this study we evaluated the applicability of the immortalized human cell line hCMEC/D3 for ABC transporter studies, focusing on the most expressed ABC transporters at the human BBB: P-glycoprotein (PGP, ABCB1), multidrug resistance protein 4 (MRP4, ABCC4) and breast cancer resistance protein (BCRP, ABCG2). Therefore, a two-step screening method was applied, consisting of a regular uptake assay (96-well format) and bidirectional transport studies, using a transwell system as in vitro simulation of the human BBB. In conclusion, the hCMEC/D3 based in vitro BBB model is well suited to screen drug candidates for ABC transporter interactions on the basis of a regular uptake assay, but in terms of transcellular permeability studies the cell line is limited by a lack of sufficient junctional tightness.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Barreira Hematoencefálica , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo
17.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944969

RESUMO

In this work, five different chelating agents, namely DFO, CTH-36, DFO*, 3,4,3-(LI-1,2-HOPO) and DOTA-GA, were compared with regard to the relative kinetic inertness of their corresponding 89Zr complexes to evaluate their potential for in vivo application and stable 89Zr complexation. The chelators were identically functionalized with tetrazines, enabling a fully comparable, efficient, chemoselective and biorthogonal conjugation chemistry for the modification of any complementarily derivatized biomolecules of interest. A small model peptide of clinical relevance (TCO-c(RGDfK)) was derivatized via iEDDA click reaction with the developed chelating agents (TCO = trans-cyclooctene and iEDDA = inverse electron demand Diels-Alder). The bioconjugates were labeled with 89Zr4+, and their radiochemical properties (labeling conditions and efficiency), logD(7.4), as well as the relative kinetic inertness of the formed complexes, were compared. Furthermore, density functional theory (DFT) calculations were conducted to identify potential influences of chelator modification on complex formation and geometry. The results of the DFT studies showed-apart from the DOTA-GA derivative-no significant influence of chelator backbone functionalization or the conjugation of the chelator tetrazines by iEDDA. All tetrazines could be efficiently introduced into c(RGDfK), demonstrating the high suitability of the agents for efficient and chemoselective bioconjugation. The DFO-, CTH-36- and DFO*-modified c(RGDfK) peptides showed a high radiolabeling efficiency under mild reaction conditions and complete 89Zr incorporation within 1 h, yielding the 89Zr-labeled analogs as homogenous products. In contrast, 3,4,3-(LI-1,2-HOPO)-c(RGDfK) required considerably prolonged reaction times of 5 h for complete radiometal incorporation and yielded several different 89Zr-labeled species. The labeling of the DOTA-GA-modified peptide was not successful at all. Compared to [89Zr]Zr-DFO-, [89Zr]Zr-CTH-36- and [89Zr]Zr-DFO*-c(RGDfK), the corresponding [89Zr]Zr-3,4,3-(LI-1,2-HOPO) peptide showed a strongly increased lipophilicity. Finally, the relative stability of the 89Zr complexes against the EDTA challenge was investigated. The [89Zr]Zr-DFO complex showed-as expected-a low kinetic inertness. Unexpectedly, also, the [89Zr]Zr-CTH-36 complex demonstrated a high susceptibility against the challenge, limiting the usefulness of CTH-36 for stable 89Zr complexation. Only the [89Zr]Zr-DFO* and the [89Zr]Zr-3,4,3-(LI-1,2-HOPO) complexes demonstrated a high inertness, qualifying them for further comparative in vivo investigation to determine the most appropriate alternative to DFO for clinical application.

18.
Biosensors (Basel) ; 11(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34562904

RESUMO

Endothelial and epithelial cellular barriers play a vital role in the selective transport of solutes and other molecules. The properties and function of these barriers are often affected in case of inflammation and disease. Modelling cellular barriers in vitro can greatly facilitate studies of inflammation, disease mechanisms and progression, and in addition, can be exploited for drug screening and discovery. Here, we report on a parallelizable microfluidic platform in a multiwell plate format with ten independent cell culture chambers to support the modelling of cellular barriers co-cultured with 3D tumor spheroids. The microfluidic platform was fabricated by microinjection molding. Electrodes integrated into the chip in combination with a FT-impedance measurement system enabled transepithelial/transendothelial electrical resistance (TEER) measurements to rapidly assess real-time barrier tightness. The fluidic layout supports the tubeless and parallelized operation of up to ten distinct cultures under continuous unidirectional flow/perfusion. The capabilities of the system were demonstrated with a co-culture of 3D tumor spheroids and cellular barriers showing the growth and interaction of HT29 spheroids with a cellular barrier of MDCK cells.


Assuntos
Técnicas Analíticas Microfluídicas , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Impedância Elétrica , Eletrodos , Células Epiteliais , Humanos , Microfluídica , Neoplasias/diagnóstico
19.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200477

RESUMO

Combining two peptides addressing two different receptors to a heterobivalent peptidic ligand (HBPL) is thought to enable an improved tumor-targeting sensitivity and thus tumor visualization, compared to monovalent peptide ligands. In the case of melanoma, the Melanocortin-1 receptor (MC1R), which is stably overexpressed in the majority of primary malignant melanomas, and integrin αvß3, which is involved in lymph node metastasis and therefore has an important role in the transition from local to metastatic disease, are important target receptors. Thus, if a radiolabeled HBPL could be developed that was able to bind to both receptor types, the early diagnosis and correct staging of the disease would be significantly increased. Here, we report on the design, synthesis, radiolabeling and in vitro and in vivo testing of different SiFAlin-modified HBPLs (SiFA = silicon fluoride acceptor), consisting of an MC1R-targeting (GG-Nle-c(DHfRWK)) and an integrin αvß3-affine peptide (c(RGDfK)), being connected by a symmetrically branching framework including linkers of differing length and composition. Kit-like 18F-radiolabeling of the HBPLs 1-6 provided the labeled products [18F]1-[18F]6 in radiochemical yields of 27-50%, radiochemical purities of ≥95% and non-optimized molar activities of 17-51 GBq/µmol within short preparation times of 25 min. Besides the evaluation of radiotracers regarding logD(7.4) and stability in human serum, the receptor affinities of the HBPLs were investigated in vitro on cell lines overexpressing integrin αvß3 (U87MG cells) or the MC1R (B16F10). Based on these results, the most promising compounds [18F]2, showing the highest affinity to both target receptors (IC50 (B16F10) = 0.99 ± 0.11 nM, IC50 (U87MG) = 1300 ± 288 nM), and [18F]4, exhibiting the highest hydrophilicity (logD(7.4) = -1.39 ± 0.03), were further investigated in vivo and ex vivo in a xenograft mouse model bearing both tumors. For both HBPLs, clear visualization of B16F10, as well as U87MG tumors, was feasible. Blocking studies using the respective monospecific peptides demonstrated both peptide binders of the HBPLs contributing to tumor uptake. Despite the somewhat lower target receptor affinities (IC50 (B16F10) = 6.00 ± 0.47 nM and IC50 (U87MG) = 2034 ± 323 nM) of [18F]4, the tracer showed higher absolute tumor uptakes ([18F]4: 2.58 ± 0.86% ID/g in B16F10 tumors and 3.92 ± 1.31% ID/g in U87MG tumors; [18F]2: 2.32 ± 0.49% ID/g in B16F10 tumors and 2.33 ± 0.46% ID/g in U87MG tumors) as well as higher tumor-to-background ratios than [18F]2. Thus, [18F]4 demonstrates to be a highly potent radiotracer for the sensitive and bispecific imaging of malignant melanoma by PET/CT imaging and impressively illustrates the suitability of the underlying concept to develop heterobivalent integrin αvß3- and MC1R-bispecific radioligands for the sensitive and specific imaging of malignant melanoma by PET/CT.

20.
Fluids Barriers CNS ; 17(1): 56, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928243

RESUMO

David S. Miller was Acting Scientific Director of the Division of Intramural Research at the National Institute of Environmental Health Sciences, National Institutes of Health, and Head of the Intracellular Regulation Group in the Laboratory of Toxicology and Pharmacology before he retired in 2016. David received his Ph.D. in biochemistry from the University of Maine in 1973. David was a Group Leader at the Michigan Cancer Foundation before joining the NIEHS in 1985. His research covered a wide range from renal excretory transport mechanisms to regulation of transporters at the blood-CSF and blood-brain barriers, from fish, amphibians and birds to mammals. David was an outstanding scientist with irresistible enthusiasm for science and an incredible ability to think outside the box while being an exceptional mentor and friend.


Assuntos
Neurociências/história , Barreira Hematoencefálica/fisiologia , História do Século XX , História do Século XXI , Humanos , Masculino , Mentores , National Institutes of Health (U.S.) , Farmacologia/história , Transporte Proteico/fisiologia , Toxicologia/história , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA