Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2758: 49-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549007

RESUMO

Neuropeptides are bioactive peptides that are synthesized and secreted by neurons in signaling pathways in the brain. Peptides and proteins are extremely vulnerable to proteolytic cleavage when their biological surrounding changes. This makes neuropeptidomics challenging due to the rapid alterations that occur to the peptidome after harvesting of brain tissue samples. For a successful neuropeptidomic study, the biological tissue sample analyzed should resemble the living state as much as possible. Heat stabilization has been proven to inhibit postmortem degradation by denaturing proteolytic enzymes, hence increasing identification rates of neuropeptides. Here, we describe two different stabilization protocols for rodent brain samples that increase the number of intact mature neuropeptides and minimize interference from degradation products of abundant proteins. Additionally, we present an extraction protocol that aims to extract a wide range of hydrophilic and hydrophobic neuropeptides by sequentially using an aqueous and an organic extraction medium.


Assuntos
Neuropeptídeos , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Proteólise , Peptídeo Hidrolases/metabolismo , Encéfalo/metabolismo
2.
Methods Mol Biol ; 2758: 109-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549011

RESUMO

A number of different approaches have been used for quantitative peptidomics. In this protocol, we describe the method in which peptides are reacted with formaldehyde and sodium cyanoborohydride, which converts primary and secondary amines into tertiary amines. By using different combinations of regular reagents, deuterated reagents (2H), and reagents containing deuterium and 13C, it is possible to produce five isotopically distinct forms of the methylated peptides, which can be quantified by mass spectrometry. Peptides with free N-termini that are primary amines incorporate two methyl groups using this procedure, which differ by 2 Da for each of the five isotopic combinations. Peptides that contain unmodified lysine residues incorporate additional pairs of methyl groups, leading to larger mass differences between isotopic forms. The reagents are commercially available, relatively inexpensive, and chemically stable.


Assuntos
Aminas , Peptídeos , Peptídeos/química , Espectrometria de Massas/métodos , Metilação , Proteômica/métodos
3.
Methods Mol Biol ; 2758: 89-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549010

RESUMO

Peptidomics is the detection and identification of the peptides present in a sample, and quantitative peptidomics provides additional information about the amounts of these peptides. It is possible to perform absolute quantitation of peptide levels in which the biological sample is compared to synthetic standards of each peptide. More commonly, relative quantitation is performed to compare peptide levels between two or more samples. Relative quantitation can measure differences between all peptides that are detectable, which can exceed 1000 peptides in a complex sample. In this chapter, various techniques used for quantitative peptidomics are described along with discussion of the advantages and disadvantages of each approach. A guide to selecting the optimal quantitative approach is provided, based on the goals of the experiment and the resources that are available.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Peptídeos , Padrões de Referência
4.
Methods Mol Biol ; 2758: 213-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549016

RESUMO

Peptidomic techniques are powerful tools to identify peptides in a biological sample. In the case of brain, which contains a complex mixture of cell types, standard peptidomics procedures reveal the major peptides in a dissected brain region. It is difficult to obtain information on peptides within a specific cell type using standard approaches, unless that cell type can be isolated. This protocol describes a targeted peptidomic approach that uses affinity chromatography to purify peptides that are substrates of carboxypeptidase E (CPE), an enzyme present in the secretory pathway of neuroendocrine cells. Many CPE products function as neuropeptides and/or peptide hormones, and therefore represent an important subset of the peptidome. Because CPE removes C-terminal Lys and Arg residues from peptide processing intermediates, organisms lacking CPE show a large decrease in the levels of the mature forms of most neuropeptides and peptide hormones, and a very large increase in the levels of the processing intermediates that contain C-terminal Lys and/or Arg (i.e., the CPE substrates). These CPE substrates can be purified on an anhydrotrypsin-agarose affinity resin, which specifically binds peptides with C-terminal basic residues. When this method is used with mice lacking CPE activity in genetically defined cell types, it allows the detection of peptides specifically produced in that cell type.


Assuntos
Neuropeptídeos , Hormônios Peptídicos , Camundongos , Animais , Carboxipeptidase H/fisiologia , Neuropeptídeos/análise , Cromatografia de Afinidade/métodos , Encéfalo/metabolismo , Hormônios Peptídicos/metabolismo , Carboxipeptidases/metabolismo
5.
Methods Mol Biol ; 2758: 485-498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549031

RESUMO

The field of peptidomics has been under development since its start more than 20 years ago. In this chapter we provide a personal outlook for future directions in this field. The applications of peptidomics technologies are spreading more and more from classical research of peptide hormones and neuropeptides towards commercial applications in plant and food-science. Many clinical applications have been developed to analyze the complexity of biofluids, which are being addressed with new instrumentation, automization, and data processing. Additionally, the newly developed field of immunopeptidomics is showing promise for cancer therapies. In conclusion, peptidomics will continue delivering important information in classical fields like neuropeptides and peptide hormones, benefiting from improvements in state-of-the-art technologies. Moreover, new directions of research such as immunopeptidomics will further complement classical omics technologies and may become routine clinical procedures. Taken together, discoveries of new substances, networks, and applications of peptides can be expected in different disciplines.


Assuntos
Neuropeptídeos , Hormônios Peptídicos , Proteômica/métodos , Neuropeptídeos/química
6.
Genes Brain Behav ; 21(7): e12827, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878875

RESUMO

ProSAAS is a neuroendocrine protein that is cleaved by neuropeptide-processing enzymes into more than a dozen products including the bigLEN and PEN peptides, which bind and activate the receptors GPR171 and GPR83, respectively. Previous studies have suggested that proSAAS-derived peptides are involved in physiological functions that include body weight regulation, circadian rhythms and anxiety-like behavior. In the present study, we find that proSAAS knockout mice display robust anxiety-like behaviors in the open field, light-dark emergence and elevated zero maze tests. These mutant mice also show a reduction in cued fear and an impairment in fear-potentiated startle, indicating an important role for proSAAS-derived peptides in emotional behaviors. ProSAAS knockout mice exhibit reduced water consumption and urine production relative to wild-type controls. No differences in food consumption and overall energy expenditure were observed between the genotypes. However, the respiratory exchange ratio was elevated in the mutants during the light portion of the light-dark cycle, indicating decreased fat metabolism during this period. While proSAAS knockout mice show normal circadian patterns of activity, even upon long-term exposure to constant darkness, they were unable to shift their circadian clock upon exposure to a light pulse. Taken together, these results show that proSAAS-derived peptides modulate a wide range of behaviors including emotion, metabolism and the regulation of the circadian clock.


Assuntos
Neuropeptídeos/metabolismo , Animais , Ansiedade/genética , Ritmo Circadiano/genética , Comportamento Consumatório , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos , Receptores Acoplados a Proteínas G
7.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217972

RESUMO

Metallocarboxypeptidase Z (CPZ) is a secreted enzyme that is distinguished from all other members of the M14 metallocarboxypeptidase family by the presence of an N-terminal cysteine-rich Frizzled-like (Fz) domain that binds Wnt proteins. Here, we present a comprehensive analysis of the enzymatic properties and substrate specificity of human CPZ. To investigate the enzymatic properties, we employed dansylated peptide substrates. For substrate specificity profiling, we generated two different large peptide libraries and employed isotopic labeling and quantitative mass spectrometry to study the substrate preference of this enzyme. Our findings revealed that CPZ has a strict requirement for substrates with C-terminal Arg or Lys at the P1' position. For the P1 position, CPZ was found to display specificity towards substrates with basic, small hydrophobic, or polar uncharged side chains. Deletion of the Fz domain did not affect CPZ activity as a carboxypeptidase. Finally, we modeled the structure of the Fz and catalytic domains of CPZ. Taken together, these studies provide the molecular elucidation of substrate recognition and specificity of the CPZ catalytic domain, as well as important insights into how the Fz domain binds Wnt proteins to modulate their functions.


Assuntos
Carboxipeptidases/química , Humanos , Domínios Proteicos , Especificidade por Substrato
8.
Annu Rev Pharmacol Toxicol ; 60: 457-476, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31479618

RESUMO

Proteasomes are large, multicatalytic protein complexes that cleave cellular proteins into peptides. There are many distinct forms of proteasomes that differ in catalytically active subunits, regulatory subunits, and associated proteins. Proteasome inhibitors are an important class of drugs for the treatment of multiple myeloma and mantle cell lymphoma, and they are being investigated for other diseases. Bortezomib (Velcade) was the first proteasome inhibitor to be approved by the US Food and Drug Administration. Carfilzomib (Kyprolis) and ixazomib (Ninlaro) have recently been approved, and more drugs are in development. While the primary mechanism of action is inhibition of the proteasome, the downstream events that lead to selective cell death are not entirely clear. Proteasome inhibitors have been found to affect protein turnover but at concentrations that are much higher than those achieved clinically, raising the possibility that some of the effects of proteasome inhibitors are mediated by other mechanisms.


Assuntos
Antineoplásicos/farmacologia , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Animais , Desenvolvimento de Medicamentos , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo
9.
J Assist Reprod Genet ; 36(9): 1891-1900, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31346917

RESUMO

PURPOSE: Based on prior reports demonstrating that neutral endopeptidase (NEP) inhibitors increase sperm motility, the goal of our studies was to identify endogenous seminal peptides that inhibit NEP and investigate their potential effect on sperm motility. METHODS: Peptidomic analysis was performed on human seminal fluid, identifying 22 novel peptides. One peptide, named RSIY-11, derived from semenogelin-1, was predicted through sequence analysis to be a substrate and/or potential inhibitor of NEP. Enzymatic analysis was conducted to determine the inhibitory constant (Ki) of RSIY-11 as an inhibitor of NEP. Total and progressive sperm motility was determined at baseline and 30 and 60 min following addition of RSIY-11 to seminal fluid in 59 patients undergoing an infertility workup at an urban medical center. Additionally, the effects of RSIY-11 on sperm motility were evaluated in 15 of the 59 patients that met criteria for asthenospermia. RESULTS: RSIY-11 was shown to act as a competitive inhibitor of NEP with a Ki of 18.4 ± 1.6 µM. Addition of RSIY-11 at concentrations of 0.75 µM, 7.5 µM, and 75 µM significantly increased sperm motility at all time points investigated, with increases of 6.1%, 6.9%, and 9.2% at 60 min, respectively. Additionally, within the subgroup of patients with asthenospermia, RSIY-11 at concentrations of 0.75 µM, 7.5 µM, and 75 µM significantly increased sperm motility at all time points investigated, with increases of 7.6%, 8.8%, and 10.6% at 60 min, respectively. CONCLUSIONS: RSIY-11 is a newly identified semenogelin-1-derived peptide present in seminal fluid. RSIY-11 acts as a potent competitive inhibitor of NEP, which when added to seminal fluid significantly increases sperm motility. RSIY-11 could play a potential role in the treatment for male factor infertility related to asthenospermia and improve intrauterine insemination outcomes.


Assuntos
Infertilidade Masculina , Neprilisina/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Adulto , Relação Dose-Resposta a Droga , Humanos , Masculino , Neprilisina/metabolismo , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Proteínas e Peptídeos Salivares/farmacologia , Sêmen/química , Sêmen/metabolismo , Proteínas Secretadas pela Vesícula Seminal/química
10.
Biomolecules ; 9(6)2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31142026

RESUMO

Peptides produced by the proteasome have been proposed to function as signaling molecules that regulate a number of biological processes. In the current study, we used quantitative peptidomics to test whether conditions that affect protein stability, synthesis, or turnover cause changes in the levels of peptides in Human Embryonic Kidney 293T (HEK293T) cells. Mild heat shock (42 °C for 1 h) or treatment with the deubiquitinase inhibitor b-AP15 led to higher levels of ubiquitinated proteins but did not significantly increase the levels of intracellular peptides. Treatment with cycloheximide, an inhibitor of protein translation, did not substantially alter the levels of intracellular peptides identified herein. Cells treated with a combination of epoxomicin and bortezomib showed large increases in the levels of most peptides, relative to the levels in cells treated with either compound alone. Taken together with previous studies, these results support a mechanism in which the proteasome cleaves proteins into peptides that are readily detected in our assays (i.e., 6-37 amino acids) and then further degrades many of these peptides into smaller fragments.


Assuntos
Inibidores Enzimáticos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Desnaturação Proteica , Sequência de Aminoácidos , Cicloeximida/farmacologia , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteômica , Ubiquitinação/efeitos dos fármacos
11.
J Am Soc Mass Spectrom ; 29(5): 866-878, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29235040

RESUMO

Quantitative peptidomics and proteomics often use chemical tags to covalently modify peptides with reagents that differ in the number of stable isotopes, allowing for quantitation of the relative peptide levels in the original sample based on the peak height of each isotopic form. Different chemical reagents have been used as tags for quantitative peptidomics and proteomics, and all have strengths and weaknesses. One of the simplest approaches uses formaldehyde and sodium cyanoborohydride to methylate amines, converting primary and secondary amines into tertiary amines. Up to five different isotopic forms can be generated, depending on the isotopic forms of formaldehyde and cyanoborohydride reagents, allowing for five-plex quantitation. However, the mass difference between each of these forms is only 1 Da per methyl group incorporated into the peptide, and for many peptides there is substantial overlap from the natural abundance of 13C and other isotopes. In this study, we calculated the contribution from the natural isotopes for 26 native peptides and derived equations to correct the peak intensities. These equations were applied to data from a study using human embryonic kidney HEK293T cells in which five replicates were treated with 100 nM vinblastine for 3 h and compared with five replicates of cells treated with control medium. The correction equations brought the replicates to the expected 1:1 ratios and revealed significant decreases in levels of 21 peptides upon vinblastine treatment. These equations enable accurate quantitation of small changes in peptide levels using the reductive methylation labeling approach. Graphical abstract ᅟ.


Assuntos
Peptídeos/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Células HEK293 , Humanos , Marcação por Isótopo/métodos , Metilação , Oxirredução
12.
PLoS One ; 12(11): e0187778, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29131831

RESUMO

Metallocarboxypeptidase D (CPD) is a membrane-bound component of the trans-Golgi network that cycles to the cell surface through exocytic and endocytic pathways. Unlike other members of the metallocarboxypeptidase family, CPD is a multicatalytic enzyme with three carboxypeptidase-like domains, although only the first two domains are predicted to be enzymatically active. To investigate the enzymatic properties of each domain in human CPD, a critical active site Glu in domain I and/or II was mutated to Gln and the protein expressed, purified, and assayed with a wide variety of peptide substrates. CPD with all three domains intact displays >50% activity from pH 5.0 to 7.5 with a maximum at pH 6.5, as does CPD with mutation of domain I. In contrast, the domain II mutant displayed >50% activity from pH 6.5-7.5. CPD with mutations in both domains I and II was completely inactive towards all substrates and at all pH values. A quantitative peptidomics approach was used to compare the activities of CPD domains I and II towards a large number of peptides. CPD cleaved C-terminal Lys or Arg from a subset of the peptides. Most of the identified substrates of domain I contained C-terminal Arg, whereas comparable numbers of Lys- and Arg-containing peptides were substrates of domain II. We also report that some peptides with C-terminal basic residues were not cleaved by either domain I or II, showing the importance of the P1 position for CPD activity. Finally, the preference of domain I for C-terminal Arg was validated through molecular docking experiments. Together with the differences in pH optima, the different substrate specificities of CPD domains I and II allow the enzyme to perform distinct functions in the various locations within the cell.


Assuntos
Proteínas/metabolismo , Sequência de Aminoácidos , Bortezomib/química , Domínio Catalítico , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Cinética , Simulação de Acoplamento Molecular , Peptídeos/química , Mutação Puntual , Proteínas/química , Proteínas/genética , Especificidade por Substrato
13.
Sci Signal ; 9(425): ra43, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27117253

RESUMO

PEN is an abundant peptide in the brain that has been implicated in the regulation of feeding. We identified a receptor for PEN in mouse hypothalamus and Neuro2A cells. PEN bound to and activated GPR83, a G protein (heterotrimeric guanine nucleotide)-binding protein)-coupled receptor (GPCR). Reduction of GPR83 expression in mouse brain and Neuro2A cells reduced PEN binding and signaling, consistent with GPR83 functioning as the major receptor for PEN. In some brain regions, GPR83 colocalized with GPR171, a GPCR that binds the neuropeptide bigLEN, another neuropeptide that is involved in feeding and is generated from the same precursor protein as is PEN. Coexpression of these two receptors in cell lines altered the signaling properties of each receptor, suggesting a functional interaction. Our data established PEN as a neuropeptide that binds GPR83 and suggested that these two ligand-receptor systems-PEN-GPR83 and bigLEN-GPR171-may be functionally coupled in the regulation of feeding.


Assuntos
Hipotálamo/metabolismo , Neuropeptídeo Y/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Regulação do Apetite/fisiologia , Western Blotting , Células CHO , Membrana Celular/metabolismo , Células Cultivadas , Cricetulus , Células HEK293 , Humanos , Masculino , Camundongos , Fosforilação , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética
14.
PLoS One ; 10(12): e0145333, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691307

RESUMO

Huntington's disease is the result of a long polyglutamine tract in the gene encoding huntingtin protein, which in turn causes a large number of cellular changes and ultimately results in neurodegeneration of striatal neurons. Although many theories have been proposed, the precise mechanism by which the polyglutamine expansion causes cellular changes is not certain. Some evidence supports the hypothesis that the long polyglutamine tract inhibits the proteasome, a multiprotein complex involved in protein degradation. However, other studies report normal proteasome function in cells expressing long polyglutamine tracts. The controversy may be due to the methods used to examine proteasome activity in each of the previous studies. In the present study, we measured proteasome function by examining levels of endogenous peptides that are products of proteasome cleavage. Peptide levels were compared among mouse striatal cell lines expressing either 7 glutamines (STHdhQ7/Q7) or 111 glutamines in the huntingtin protein, either heterozygous (STHdhQ7/Q111) or homozygous (STHdhQ111/Q111). Both of the cell lines expressing huntingtin with 111 glutamines showed a large reduction in nearly all of the peptides detected in the cells, relative to levels of these peptides in cells homozygous for 7 glutamines. Treatment of STHdhQ7/Q7 cells with proteasome inhibitors epoxomicin or bortezomib also caused a large reduction in most of these peptides, suggesting that they are products of proteasome-mediated cleavage of cellular proteins. Taken together, these results support the hypothesis that proteasome function is impaired by the expression of huntingtin protein containing long polyglutamine tracts.


Assuntos
Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Bortezomib/farmacologia , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Glutamina , Proteína Huntingtina , Doença de Huntington/patologia , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oligopeptídeos/farmacologia , Peptídeos/análise , Peptídeos/química , Inibidores de Proteassoma/farmacologia , Proteômica/métodos
15.
J Am Soc Mass Spectrom ; 26(12): 1981-91, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26305799

RESUMO

Mass spectrometry-based peptidomic approaches are powerful techniques to detect and identify the peptide content of biological samples. The present study investigated the limitations of peptidomic approaches using trimethylammonium butyrate isotopic tags to quantify relative peptide levels and Mascot searches to identify peptides. Data were combined from previous studies on human cell lines or mouse tissues. The combined databases contain 2155 unique peptides ranging in mass from 444 to 8765 Da, with the vast majority between 1 and 3 kDa. The amino acid composition of the identified peptides generally reflected the frequency in the Eukaryotic proteome with the exception of Cys, which was not present in any of the identified peptides in the free-SH form but was detected at low frequency as a disulfide with Cys residues, a disulfide with glutathione, or as S-cyanocysteine. To test if the low detection rate of peptides smaller than 500 Da, larger than 3 kDa, or containing Cys was a limitation of the peptidomics procedure, tryptic peptides of known proteins were processed for peptidomics using the same approach used for human cell lines and mouse tissues. The identified tryptic peptides ranged from 516 to 2418 Da, whereas the theoretical digest ranged from 217 to 7559 Da. Peptides with Cys were rarely detected and, if present, the Cys was usually modified S-cyanocysteine. Additionally, peptides with mono- and di-iodo Tyr and His were identified. Taken together, there are limitations of peptidomic techniques, and awareness of these limitations is important to properly use and interpret results. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Linhagem Celular , Cisteína/análogos & derivados , Cisteína/análise , Dissulfetos/análise , Glutationa/análise , Humanos , Camundongos , Dados de Sequência Molecular
16.
PLoS One ; 9(7): e103604, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25079948

RESUMO

The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin ß-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Oligopeptídeos/farmacologia , Peptídeos/metabolismo , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia , Bortezomib , Linhagem Celular Tumoral , Células HEK293 , Humanos , Concentração Inibidora 50 , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Leupeptinas/farmacologia
17.
Proteomics Clin Appl ; 8(5-6): 327-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24470285

RESUMO

Carboxypeptidases (CPs) perform many diverse physiological functions by removing C-terminal amino acids from proteins and peptides. Some CPs function in the degradation of proteins in the digestive tract while other enzymes play biosynthetic roles in the formation of neuropeptides and peptide hormones. Another set of CPs modify tubulin by removing amino acids from the C-terminus and from polyglutamyl side chains, thereby altering the properties of microtubules. This review focuses on three CPs: carboxypeptidase E, carboxypeptidase A6, and cytosolic carboxypeptidase 1. Naturally occurring mutations in all three of these enzymes are associated with disease phenotypes, ranging from obesity to epilepsy to neurodegeneration. Peptidomics is a useful tool to investigate the relationship between these mutations and alterations in peptide levels. This technique has also been used to define the function and characteristics of CPs. Results from peptidomics studies have helped to elucidate the function of CPs and clarify the biological underpinnings of pathologies by identifying peptides altered in disease states. This review describes the use of peptidomic techniques to gain insights into the normal function of CPs and the molecular defects caused by mutations in the enzymes.


Assuntos
Carboxipeptidases/metabolismo , Doença , Peptídeos/metabolismo , Proteômica/métodos , Animais , Humanos
18.
Proc Natl Acad Sci U S A ; 110(40): 16211-6, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043826

RESUMO

Multiple peptide systems, including neuropeptide Y, leptin, ghrelin, and others, are involved with the control of food intake and body weight. The peptide LENSSPQAPARRLLPP (BigLEN) has been proposed to act through an unknown receptor to regulate body weight. In the present study, we used a combination of ligand-binding and receptor-activity assays to characterize a Gαi/o protein-coupled receptor activated by BigLEN in the mouse hypothalamus and Neuro2A cells. We then selected orphan G protein-coupled receptors expressed in the hypothalamus and Neuro2A cells and tested each for activation by BigLEN. G protein-coupled receptor 171 (GPR171) is activated by BigLEN, but not by the C terminally truncated peptide LittleLEN. The four C-terminal amino acids of BigLEN are sufficient to bind and activate GPR171. Overexpression of GPR171 leads to an increase, and knockdown leads to a decrease, in binding and signaling by BigLEN and the C-terminal peptide. In the hypothalamus GPR171 expression complements the expression of BigLEN, and its level and activity are elevated in mice lacking BigLEN. In mice, shRNA-mediated knockdown of hypothalamic GPR171 leads to a decrease in BigLEN signaling and results in changes in food intake and metabolism. The combination of GPR171 shRNA together with neutralization of BigLEN peptide by antibody absorption nearly eliminates acute feeding in food-deprived mice. Taken together, these results demonstrate that GPR171 is the BigLEN receptor and that the BigLEN-GPR171 system plays an important role in regulating responses associated with feeding and metabolism in mice.


Assuntos
Peso Corporal/fisiologia , Comportamento Alimentar/fisiologia , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Variância , Animais , Western Blotting , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real
19.
PLoS One ; 8(1): e53263, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308178

RESUMO

Bortezomib is an antitumor drug that competitively inhibits proteasome beta-1 and beta-5 subunits. While the impact of bortezomib on protein stability is known, the effect of this drug on intracellular peptides has not been previously explored. A quantitative peptidomics technique was used to examine the effect of treating human embryonic kidney 293T (HEK293T) cells with 5-500 nM bortezomib for various lengths of time (30 minutes to 16 hours), and human neuroblastoma SH-SY5Y cells with 500 nM bortezomib for 1 hour. Although bortezomib treatment decreased the levels of some intracellular peptides, the majority of peptides were increased by 50-500 nM bortezomib. Peptides requiring cleavage at acidic and hydrophobic sites, which involve beta-1 and -5 proteasome subunits, were among those elevated by bortezomib. In contrast, the proteasome inhibitor epoxomicin caused a decrease in the levels of many of these peptides. Although bortezomib can induce autophagy under certain conditions, the rapid bortezomib-mediated increase in peptide levels did not correlate with the induction of autophagy. Taken together, the present data indicate that bortezomib alters the balance of intracellular peptides, which may contribute to the biological effects of this drug.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Neuroblastoma/tratamento farmacológico , Peptídeos/metabolismo , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia , Sequência de Aminoácidos , Bortezomib , Linhagem Celular Tumoral , Células HEK293 , Humanos , Dados de Sequência Molecular , Neuroblastoma/patologia , Peptídeos/análise , Proteômica
20.
J Biol Chem ; 287(9): 6503-17, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22170066

RESUMO

The Purkinje cell degeneration (pcd) mouse has a disruption in the gene encoding cytosolic carboxypeptidase 1 (CCP1). This study tested two proposed functions of CCP1: degradation of intracellular peptides and processing of tubulin. Overexpression (2-3-fold) or knockdown (80-90%) of CCP1 in human embryonic kidney 293T cells (HEK293T) did not affect the levels of most intracellular peptides but altered the levels of α-tubulin lacking two C-terminal amino acids (delta2-tubulin) ≥ 5-fold, suggesting that tubulin processing is the primary function of CCP1, not peptide degradation. Purified CCP1 produced delta2-tubulin from purified porcine brain α-tubulin or polymerized HEK293T microtubules. In addition, CCP1 removed Glu residues from the polyglutamyl side chains of porcine brain α- and ß-tubulin and also generated a form of α-tubulin with two C-terminal Glu residues removed (delta3-tubulin). Consistent with this, pcd mouse brain showed hyperglutamylation of both α- and ß-tubulin. The hyperglutamylation of α- and ß-tubulin and subsequent death of Purkinje cells in pcd mice was counteracted by the knock-out of the gene encoding tubulin tyrosine ligase-like-1, indicating that this enzyme hyperglutamylates α- and ß-tubulin. Taken together, these results demonstrate a role for CCP1 in the processing of Glu residues from ß- as well as α-tubulin in vitro and in vivo.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Degeneração Neural/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Neoplasias do Colo , Citosol/enzimologia , Feminino , Proteínas de Ligação ao GTP/genética , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Degeneração Neural/genética , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Estrutura Terciária de Proteína , Células de Purkinje/enzimologia , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Suínos , Tubulina (Proteína)/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA