Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 16(1): 232, 2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29274637

RESUMO

BACKGROUND: The gene encoding a thermostable cellulase of family 12 was previously isolated from a Rhodothermus marinus through functional screening. CelA is a protein of 260 aminoacyl residues with a 28-residue amino-terminal signal peptide. Mature CelA was poorly synthesized in some Escherichia coli strains and not at all in others. Here we present an alternative approach for its heterologous production as a secreted polypeptide in Streptomyces. RESULTS: CelA was successfully over-expressed as a secreted polypeptide in Streptomyces lividans TK24. To this end, CelA was fused C-terminally to the secretory signal peptide of the subtilisin inhibitor protein (Sianidis et al. in J Biotechnol. 121: 498-507, 2006) from Streptomyces venezuelae and a new cloning strategy developed. Optimal growth media and conditions that stall biomass production promote excessive CelA secretion. Under optimal growth conditions in nutrient broth medium, significant amounts of mature CelA (50-90 mg/L or 100-120 mg/g of dry cell weight) are secreted in the spent growth media after 7 days. A protocol to rapidly purify CelA to homogeneity from culture supernatants was developed and specific anti-sera raised against it. Biophysical, biochemical and immmuno-detection analyses indicate that the enzyme is intact, stable and fully functional. CelA is the most thermostable heterologous polypeptide shown to be secreted from S. lividans. CONCLUSION: This study further validates and extends the use of the S. lividans platform for production of heterologous enzymes of industrial importance and extends it to active thermostable enzymes. This study contributes to developing a platform for poly-omics analysis of protein secretion in S. lividans.


Assuntos
Proteínas de Bactérias/metabolismo , Celulase/metabolismo , Expressão Gênica , Rhodothermus/enzimologia , Streptomyces lividans/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulase/química , Celulase/genética , Estabilidade Enzimática , Temperatura Alta , Transporte Proteico , Rhodothermus/genética , Streptomyces lividans/metabolismo
2.
PLoS One ; 10(9): e0137374, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26375388

RESUMO

Phage vB_Tsc2631 infects the extremophilic bacterium Thermus scotoductus MAT2631 and uses the Ts2631 endolysin for the release of its progeny. The Ts2631 endolysin is the first endolysin from thermophilic bacteriophage with an experimentally validated catalytic site. In silico analysis and computational modelling of the Ts2631 endolysin structure revealed a conserved Zn2+ binding site (His30, Tyr58, His131 and Cys139) similar to Zn2+ binding site of eukaryotic peptidoglycan recognition proteins (PGRPs). We have shown that the Ts2631 endolysin lytic activity is dependent on divalent metal ions (Zn2+ and Ca2+). The Ts2631 endolysin substitution variants H30N, Y58F, H131N and C139S dramatically lost their antimicrobial activity, providing evidence for the role of the aforementioned residues in the lytic activity of the enzyme. The enzyme has proven to be not only thermoresistant, retaining 64.8% of its initial activity after 2 h at 95°C, but also highly thermodynamically stable (Tm = 99.82°C, ΔHcal = 4.58 × 10(4) cal mol(-1)). Substitutions of histidine residues (H30N and H131N) and a cysteine residue (C139S) resulted in variants aggregating at temperatures ≥75°C, indicating a significant role of these residues in enzyme thermostability. The substrate spectrum of the Ts2631 endolysin included extremophiles of the genus Thermus but also Gram-negative mesophiles, such as Escherichia coli, Salmonella panama, Pseudomonas fluorescens and Serratia marcescens. The broad substrate spectrum and high thermostability of this endolysin makes it a good candidate for use as an antimicrobial agent to combat Gram-negative pathogens.


Assuntos
Bacteriófagos/enzimologia , Domínio Catalítico , Endopeptidases/química , Endopeptidases/metabolismo , Thermus/virologia , Sequência de Aminoácidos , Bacteriófagos/fisiologia , Cátions Bivalentes/farmacologia , Estabilidade Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Cloreto de Sódio/farmacologia , Especificidade por Substrato , Temperatura
3.
J Biotechnol ; 182-183: 1-10, 2014 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-24786823

RESUMO

The recA gene of newly discovered Thermus thermophilus MAT72 phage Tt72 (Myoviridae) was cloned and overexpressed in Escherichia coli. The 1020-bp gene codes for a 339-amino-acid polypeptide with an Mr of 38,155 which shows 38.7% positional identity to the E. coli RecA protein. When expressed in E. coli, the Tt72 recA gene did not confer the ability to complement the ultraviolet light (254nm) sensitivity of an E. coli recA mutant. Tt72 RecA protein has been purified with good yield to catalytic and electrophoretic homogeneity using a three-step chromatography procedure. Biochemical characterization indicated that the protein can pair and promote ATP-dependent strand exchange reaction resulting in formation of a heteroduplex DNA at 60°C under conditions otherwise optimal for E. coli RecA. When the Tt72 RecA protein was included in a standard PCR-based DNA amplification reaction, the specificity of the PCR assays was significantly improved by eliminating non-specific products.


Assuntos
Myoviridae/genética , Reação em Cadeia da Polimerase/métodos , Recombinases Rec A/genética , Proteínas Recombinantes/genética , Thermus thermophilus/genética , Proteínas Virais/genética , Sequência de Aminoácidos , DNA Viral/genética , Escherichia coli/genética , Dados de Sequência Molecular , Recombinases Rec A/isolamento & purificação , Recombinases Rec A/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo
4.
Vet Microbiol ; 136(3-4): 326-34, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19147307

RESUMO

Moritella viscosa causes winter ulcer disease in salmonids. The aim of the present work was to isolate and partially characterise an extracellular peptidase from M. viscosa, and to study its role in virulence. The peptidase, termed MvP1, was a 38-kDa metallopeptidase produced in late exponential growth. The optimum temperature for MvP1 was 40 degrees C, but the enzyme was active over a broad range of temperatures. MvP1 was non-lethal to salmon at concentrations up to 0.22microg/g fish, but extracellular products were lethal to salmon. MvP1 degraded casein, gelatin and collagen from lumpfish skin. It caused considerable tissue necrosis and hemorrhages at the site of injection, and affected cell-cell adhesions in EPC and BF-2 cell lines, but was not highly cytotoxic. The peptidase partially degraded fish IgM heavy chain but was non-hemolytic. The mvp1 gene was sequenced and encoded a 734-aa polypeptide containing a signal sequence, an N-terminal propeptide, a mature peptidase domain and a C-terminal propeptide. The MvP1 propeptide undergoes both N-terminal and C-terminal processing and different C-terminal processing results in the formation of several active isoforms of the mature peptidase. The catalytic domain showed highest sequence similarity with several vibriolysins (EC 3.4.24.25) originating from Pseudoalteromonas strains, showing up to 80% aa identity. The results indicate that MvP1 is a previously unknown vibriolysin that might affect M. viscosa virulence by aiding in the invasion and dissemination of the bacterium in its host, by causing tissue destruction.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Metaloendopeptidases/isolamento & purificação , Moritella/enzimologia , Salmonidae , Sequência de Aminoácidos , Animais , Sequência de Bases , Eletroforese em Gel Bidimensional/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia , Imunoglobulina M/metabolismo , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Dados de Sequência Molecular , Moritella/genética , Moritella/isolamento & purificação , Fatores de Virulência/genética , Fatores de Virulência/isolamento & purificação , Fatores de Virulência/metabolismo
5.
J Biol Chem ; 280(7): 5188-94, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15579472

RESUMO

A polynucleotide kinase from the thermophilic bacteriophage RM378 that infects the thermophilic eubacterium Rhodothermus marinus was identified, expressed, and purified. This polynucleotide kinase was demonstrated to have a 5'-kinase domain as well as a 3'-phosphohydrolase domain. The RM378 polynucleotide kinase had limited sequence similarity to the 5'-kinase domain of the T4 bacteriophage polynucleotide kinase, but apparent homology was not evident within the 3'-phosphohydrolase domain. The domain order of RM378 polynucleotide kinase was reversed relative to that of the T4 polynucleotide kinase. The RM378 phosphohydrolase domain displayed some sequence similarity with the bacterial poly(A) polymerase family, including an HD motif characteristic of the diverse superfamily of metal-dependent HD phosphohydrolases. The RM378 polynucleotide kinase was biochemically characterized and shown to possess 5'-kinase activity on RNA and single- and double-stranded DNA at elevated temperatures. It also showed phosphohydrolase activity on 2':3'-cyclic adenosine monophosphate. This description of the RM378 polynucleotide kinase, along with the recently described RM378 RNA ligase, suggests that the RM378 bacteriophage has to counter a similar anti-phage mechanism in R. marinus as the one that the T4 phage has to counter in Escherichia coli.


Assuntos
Bacteriófagos/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Difosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Polinucleotídeo 5'-Hidroxiquinase/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA