Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 550: 111222, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-35843440

RESUMO

BACKGROUND: The cyclic nucleotides cAMP and cGMP inhibit platelet activation. Different platelet signaling modules work together. We develop here a modelling framework to integrate different signaling modules and apply it to platelets. RESULTS: We introduce a novel standardized bilinear coupling mechanism allowing sub model debugging and standardization of coupling with optimal data driven modelling by methods from optimization. Besides cAMP signaling our model considers specific cGMP effects including external stimuli by drugs. Moreover, the output of the cGMP module serves as input for a modular model of VASP phosphorylation and for the activity of cAMP and cGMP pathways in platelets. Experimental data driven modeling allows us to design models with quantitative output. We use the condensed information about involved regulation and system responses for modeling drug effects and obtaining optimal experimental settings. Stepwise further validation of our model is given by direct experimental data. CONCLUSIONS: We present a general framework for model integration using modules and their stimulus responses. We demonstrate it by a multi-modular model for platelet signaling focusing on cGMP and VASP phosphorylation. Moreover, this allows to estimate drug action on any of the inhibitory cyclic nucleotide pathways (cGMP, cAMP) and is supported by experimental data.


Assuntos
Plaquetas , AMP Cíclico , GMP Cíclico , Nucleotídeos Cíclicos , Fosfoproteínas , Fosforilação
2.
Redox Biol ; 48: 102179, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34763298

RESUMO

3',5'-cyclic guanosine monophosphate (cGMP) is a druggable second messenger regulating cell growth and survival in a plethora of cells and disease states, many of which are associated with hypoxia. For example, in myocardial infarction and heart failure (HF), clinical use of cGMP-elevating drugs improves disease outcomes. Although they protect mice from ischemia/reperfusion (I/R) injury, the exact mechanism how cardiac cGMP signaling is regulated in response to hypoxia is still largely unknown. By monitoring real-time cGMP dynamics in murine and human cardiomyocytes using in vitro and in vivo models of hypoxia/reoxygenation (H/R) and I/R injury combined with biochemical methods, we show that hypoxia causes rapid but partial degradation of cGMP-hydrolyzing phosphodiesterase-3A (PDE3A) protein via the autophagosomal-lysosomal pathway. While increasing cGMP in hypoxia prevents cell death, partially reduced PDE3A does not change the pro-apoptotic second messenger 3',5'-cyclic adenosine monophosphate (cAMP). However, it leads to significantly enhanced protective effects of clinically relevant activators of nitric oxide-sensitive guanylyl cyclase (NO-GC). Collectively, our mouse and human data unravel a new mechanism by which cardiac cGMP improves hypoxia-associated disease conditions.

3.
Dis Model Mech ; 11(2)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361518

RESUMO

CAR-like membrane protein (CLMP), an immunoglobulin cell adhesion molecule (IgCAM), has been implicated in congenital short-bowel syndrome in humans, a condition with high mortality for which there is currently no cure. We therefore studied the function of CLMP in a Clmp-deficient mouse model. Although we found that the levels of mRNAs encoding Connexin43 or Connexin45 were not or were only marginally affected, respectively, by Clmp deficiency, the absence of CLMP caused a severe reduction of both proteins in smooth muscle cells of the intestine and of Connexin43 in the ureter. Analysis of calcium signaling revealed a disordered cell-cell communication between smooth muscle cells, which in turn induced an impaired and uncoordinated motility of the intestine and the ureter. Consequently, insufficient transport of chyme and urine caused a fatal delay to thrive, a high rate of mortality, and provoked a severe hydronephrosis in CLMP knockouts. Neurotransmission and the capability of smooth muscle cells to contract in ring preparations of the intestine were not altered. Physical obstructions were not detectable and an overall normal histology in the intestine as well as in the ureter was observed, except for a slight hypertrophy of smooth muscle layers. Deletion of Clmp did not lead to a reduced length of the intestine as shown for the human CLMP gene but resulted in gut malrotations. In sum, the absence of CLMP caused functional obstructions in the intestinal tract and ureter by impaired peristaltic contractions most likely due to a lack of gap-junctional communication between smooth muscle cells.


Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Intestinos/fisiologia , Contração Muscular , Músculo Liso/fisiologia , Ureter/fisiologia , Animais , Peso Corporal , Sinalização do Cálcio , Comunicação Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/deficiência , Feminino , Humanos , Hidronefrose/patologia , Intestinos/citologia , Intestinos/ultraestrutura , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Peristaltismo , Análise de Sobrevida , Transmissão Sináptica
4.
Pflugers Arch ; 470(4): 693-702, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29294149

RESUMO

Phosphodiesterase 3 (PDE3) exists in two isoforms (PDE3A and PDE3B) and is known to act as cGMP-inhibited cAMP-degrading PDE. Therefore, PDE3 may likely be involved in the interaction between the two second messenger pathways. NO-sensitive guanylyl cyclase (NO-GC) is the most important cytosolic generator of cGMP. Here, we investigated the effect of NO-GC deletion on PDE3A-mediated signaling in animals lacking NO-GC either globally (GCKO) or specifically in smooth muscle cells (SMC-GCKO). PDE3A expression is detected in murine aortic smooth muscle, platelets, and heart tissue. Expression and activity of PDE3A in aortae from GCKO and SMC-GCKO mice was reduced by approx. 50% compared to that in control animals. PDE3A downregulation can be linked to the reduction in NO-GC and is not an effect of the increased blood pressure levels resulting from NO-GC deletion. Despite the different PDE3A expression levels, smooth muscle relaxation induced by forskolin to stimulate cAMP signaling was similar in all genotypes. Basal and forskolin-stimulated cAMP levels in aortic tissue were not different between KO and control strains. However, the potency of milrinone, a selective inhibitor of PDE3A, to induce relaxation was higher in aortae from GCKO and SMC-GCKO than that in aorta from control animals. These data were corroborated by the effect of milrinone in vivo, which led to an increase in systolic blood pressure in both KO strains but not in control mice. We conclude that NO-GC modulates PDE3A expression and activity in SMC in vivo conceivably to preserve functional cAMP signaling.


Assuntos
Aorta/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Guanilato Ciclase/metabolismo , Óxido Nítrico/metabolismo , Animais , Aorta/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Colforsina/farmacologia , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Milrinona/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Naunyn Schmiedebergs Arch Pharmacol ; 390(12): 1177-1188, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29018913

RESUMO

Although the Nobel Prize for the discovery of nitric oxide (NO) dates back almost 20 years now, the knowledge about cGMP signaling is still constantly increasing. It looks even so that our understanding of the role of the soluble guanylyl cyclase (sGC) and particulate guanylyl cyclase (pGC) in health and disease is in many aspects at the beginning and far from being understood. This holds even true for the therapeutic impact of innovative drugs acting on both the NO/sGC and the pGC pathways. Since cGMP, as second messenger, is involved in the pathogenesis of numerous diseases within the cardiovascular, pulmonary, renal, and endocrine systems and also plays a role in neuronal, sensory, and tumor processes, drug applications might be quite broad. On the 8th International Conference on cGMP, held in Bamberg, Germany, world leading experts came together to discuss these topics. All aspects of cGMP research from the basic understanding of cGMP signaling to clinical applicability were discussed in depth. In addition, present and future therapeutic applications of cGMP-modulating pharmacotherapy were presented ( http://www.cyclicgmp.net/index.html ).


Assuntos
GMP Cíclico/fisiologia , Animais , GMP Cíclico/biossíntese , Guanilato Ciclase/metabolismo , Cardiopatias/enzimologia , Cardiopatias/metabolismo , Humanos , Fenômenos Fisiológicos do Sistema Nervoso , Óxido Nítrico/fisiologia
6.
Naunyn Schmiedebergs Arch Pharmacol ; 388(12): 1237-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26486926

RESUMO

During the past decade, our knowledge on the physiology, pathophysiology, basic pharmacology, and clinical pharmacology of the second messenger (cGMP) has increased tremendously. It is now well-established that cGMP, generated by soluble and particulate guanylate cyclases, is highly compartmentalized in cells and regulates numerous body functions. New cGMP-regulated physiological functions include meiosis and temperature perception. cGMP is involved in the genesis of numerous pathologies including cardiovascular, pulmonary, endocrine, metabolic, neuropsychiatric, eye, and tumor diseases. Several new clinical uses of stimulators and activators of soluble guanylate cyclase and of phosphodiesterase inhibitors such as heart failure, kidney failure, cognitive disorders, obesity bronchial asthma, and osteoporosis are emerging. The combination of neprilysin inhibitors-enhancing stimulation of the particulate guanylate cyclase pathway by preventing natriuretic peptide degradation-with angiotensin AT1 receptor antagonists constitutes a novel promising strategy for heart failure treatment. The role of oxidative stress in cGMP signaling, application of cGMP sensors, and gene therapy for degenerative eye diseases are emerging topics. It is anticipated that cGMP research will further prosper over the next years and reach out into more and more basic and clinical disciplines.


Assuntos
Congressos como Assunto , GMP Cíclico/metabolismo , GMP Cíclico/uso terapêutico , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/metabolismo , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , GMP Cíclico/antagonistas & inibidores , Alemanha , Guanilato Ciclase/metabolismo , Humanos , Internacionalidade , Farmacologia Clínica/métodos , Farmacologia Clínica/tendências , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/uso terapêutico , Receptores Citoplasmáticos e Nucleares/metabolismo , Relatório de Pesquisa , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Guanilil Ciclase Solúvel , Resultado do Tratamento
7.
Hypertension ; 65(2): 385-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452469

RESUMO

Nitroxyl (HNO), the reduced and protonated form of nitric oxide (NO·), confers unique physiological effects including vasorelaxation and enhanced cardiac contractility. These features have spawned current pharmaceutical development of HNO donors as heart failure therapeutics. HNO interacts with selective redox sensitive cysteines to effect signaling but is also proposed to activate soluble guanylate cyclase (sGC) in vitro to induce vasodilation and potentially enhance contractility. Here, we tested whether sGC stimulation is required for these HNO effects in vivo and if HNO also modifies a redox-sensitive cysteine (C42) in protein kinase G-1α to control vasorelaxation. Intact mice and isolated arteries lacking the sGC-ß subunit (sGCKO, results in full sGC deficiency) or expressing solely a redox-dead C42S mutant protein kinase G-1α were exposed to the pure HNO donor, CXL-1020. CXL-1020 induced dose-dependent systemic vasodilation while increasing contractility in controls; however, vasodilator effects were absent in sGCKO mice whereas contractility response remained. The CXL-1020 dose reversing 50% of preconstricted force in aortic rings was ≈400-fold greater in sGCKO than controls. Cyclic-GMP and cAMP levels were unaltered in myocardium exposed to CXL-1020, despite its inotropic-vasodilator activity. In protein kinase G-1α(C42S) mice, CXL-1020 induced identical vasorelaxation in vivo and in isolated aortic and mesenteric vessels as in littermate controls. In both groups, dilation was near fully blocked by pharmacologically inhibiting sGC. Thus, sGC and cGMP-dependent signaling are necessary and sufficient for HNO-induced vasodilation in vivo but are not required for positive inotropic action. Redox modulation of protein kinase G-1α is not a mechanism for HNO-mediated vasodilation.


Assuntos
Cardiotônicos/farmacologia , Guanilato Ciclase/fisiologia , Óxidos de Nitrogênio/farmacologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Vasodilatação/fisiologia , Animais , Aorta/efeitos dos fármacos , GMP Cíclico/fisiologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/química , Proteína Quinase Dependente de GMP Cíclico Tipo I/deficiência , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Cisteína/química , Guanilato Ciclase/deficiência , Guanilato Ciclase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/fisiopatologia , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Óxido Nítrico/fisiologia , Doadores de Óxido Nítrico/farmacologia , Oxirredução , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Sistemas do Segundo Mensageiro/fisiologia , Guanilil Ciclase Solúvel , Sulfonamidas/farmacologia , Vasodilatação/efeitos dos fármacos
8.
Ann Rheum Dis ; 74(7): 1408-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24567525

RESUMO

OBJECTIVES: We have previously described the antifibrotic role of the soluble guanylate cyclase (sGC). The mode of action, however, remained elusive. In the present study, we describe a novel link between sGC signalling and transforming growth factor ß (TGFß) signalling that mediates the antifibrotic effects of the sGC. METHODS: Human fibroblasts and murine sGC knockout fibroblasts were treated with the sGC stimulator BAY 41-2272 or the stable cyclic guanosine monophosphate (cGMP) analogue 8-Bromo-cGMP and stimulated with TGFß. sGC knockout fibroblasts were isolated from sGCI(fl/fl) mice, and recombination was induced by Cre-adenovirus. In vivo, we studied the antifibrotic effects of BAY 41-2272 in mice overexpressing a constitutively active TGF-ß1 receptor. RESULTS: sGC stimulation inhibited TGFß-dependent fibroblast activation and collagen release. sGC knockout fibroblasts confirmed that the sGC is essential for the antifibrotic effects of BAY 41-2272. Furthermore, 8-Bromo-cGMP reduced TGFß-dependent collagen release. While nuclear p-SMAD2 and 3 levels, SMAD reporter activity and transcription of classical TGFß target genes remained unchanged, sGC stimulation blocked the phosphorylation of ERK. In vivo, sGC stimulation inhibited TGFß-driven dermal fibrosis but did not change p-SMAD2 and 3 levels and TGFß target gene expression, confirming that non-canonical TGFß pathways mediate the antifibrotic sGC activity. CONCLUSIONS: We elucidated the antifibrotic mode of action of the sGC that increases cGMP levels, blocks non-canonical TGFß signalling and inhibits experimental fibrosis. Since sGC stimulators have shown excellent efficacy and tolerability in phase 3 clinical trials for pulmonary arterial hypertension, they may be further developed for the simultaneous treatment of fibrosis and vascular disease in systemic sclerosis.


Assuntos
Fibroblastos/patologia , Guanilato Ciclase/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Escleroderma Sistêmico/patologia , Escleroderma Sistêmico/fisiopatologia , Transdução de Sinais/fisiologia , Pele/patologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Estudos de Casos e Controles , Células Cultivadas , Colágeno/metabolismo , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose/metabolismo , Fibrose/prevenção & controle , Guanilato Ciclase/deficiência , Humanos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Pirazóis/farmacologia , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores de Fatores de Crescimento Transformadores beta/efeitos dos fármacos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Escleroderma Sistêmico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Proteínas Smad/metabolismo , Guanilil Ciclase Solúvel , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA