Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pediatr Gastroenterol Nutr ; 78(3): 662-669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299301

RESUMO

OBJECTIVES: Patients with moderate-severe Crohn's disease (CD) who are treated with antitumor necrosis factor alpha (TNF-α) agents may be subjected to primary nonresponse or partial response. We aimed to identify tissue markers that may predict response to these agents. METHODS: Pediatric patients (6-18 years) with either ileal or ileo-colonic CD who were treated with anti-TNF-α were stratified into three different groups based on their overall response to therapy at the end of induction including clinical and laboratory parameters (group 1-full responders [FR], group 2-partial responders [PR], group 3-nonresponders [NR]). Seven tissue markers (fibronectin, interleukin [IL]-23R, IL-23, TNF-α, collagen-III, IL-13R, and hypoxia-inducible factors [HIF]-1α) were evaluated. Immunofluorescence (IF) analyses were performed on biopsies from the terminal ileum, which were retrieved up to 6 months before treatment initiation. RESULTS: Twenty-six CD patients (16 [61.5%] males; age 13.9 ± 2.9 years), including 8 (30.8%) with ileal disease and 18 (69.2%) with ileo-colonic disease, were enrolled. Terminal ileum biopsies from nine patients from group 1, nine from group 2, and eight from group 3 were evaluated. Three antibodies were found to be significantly different between NR and FR groups; Collagen III and fibronectin stains were significantly more prominent in NR patients, while TNF-α stain was significantly more pronounced in FR, p < 0.05 for each. PR could not have been predicted with neither of markers. CONCLUSIONS: Decreased tissue IF intensity of fibronectin and collagen III and increased intensity of TNF-α may predict response to anti-TNF-α treatment.


Assuntos
Antineoplásicos , Doença de Crohn , Masculino , Humanos , Criança , Adolescente , Feminino , Doença de Crohn/tratamento farmacológico , Fator de Necrose Tumoral alfa/uso terapêutico , Infliximab/uso terapêutico , Fibronectinas/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Antineoplásicos/uso terapêutico , Necrose , Colágeno , Resultado do Tratamento
2.
Nat Commun ; 12(1): 5581, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552085

RESUMO

Cancer cells depend on actin cytoskeleton rearrangement to carry out hallmark malignant functions including activation, proliferation, migration and invasiveness. Wiskott-Aldrich Syndrome protein (WASp) is an actin nucleation-promoting factor and is a key regulator of actin polymerization in hematopoietic cells. The involvement of WASp in malignancies is incompletely understood. Since WASp is exclusively expressed in hematopoietic cells, we performed in silico screening to identify small molecule compounds (SMCs) that bind WASp and promote its degradation. We describe here one such identified molecule; this WASp-targeting SMC inhibits key WASp-dependent actin processes in several types of hematopoietic malignancies in vitro and in vivo without affecting naïve healthy cells. This small molecule demonstrates limited toxicity and immunogenic effects, and thus, might serve as an effective strategy to treat specific hematopoietic malignancies in a safe and precisely targeted manner.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Neoplasias Hematológicas/tratamento farmacológico , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas do Citoesqueleto/metabolismo , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos , Integrinas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Invasividade Neoplásica , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 10(1): 7599, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371929

RESUMO

Biliary atresia is a neonatal liver disease with extrahepatic bile duct obstruction and progressive liver fibrosis. The etiology and pathogenesis of the disease are unknown. We previously identified a plant toxin, biliatresone, responsible for biliary atresia in naturally-occurring animal models, that causes cholangiocyte destruction in in-vitro models. Decreases in reduced glutathione (GSH) mimic the effects of biliatresone, and agents that replenish cellular GSH ameliorate the effects of the toxin. The goals of this study were to define signaling pathways downstream of biliatresone that lead to cholangiocyte destruction and to determine their relationship to GSH. Using cholangiocyte culture and 3D cholangiocyte spheroid cultures, we found that biliatresone and decreases in GSH upregulated RhoU/Wrch1, a Wnt signaling family member, which then mediated an increase in Hey2 in the NOTCH signaling pathway, causing downregulation of the transcription factor Sox17. When these genes were up- or down-regulated, the biliatresone effect on spheroids was phenocopied, resulting in lumen obstruction. Biopsies of patients with biliary atresia demonstrated increased RhoU/Wrch1 and Hey2 expression in cholangiocytes. We present a novel pathway of cholangiocyte injury in a model of biliary atresia, which is relevant to human BA and may suggest potential future therapeutics.


Assuntos
Ductos Biliares Extra-Hepáticos/metabolismo , Ductos Biliares Extra-Hepáticos/patologia , Atresia Biliar/etiologia , Atresia Biliar/metabolismo , Glutationa/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzodioxóis/metabolismo , Atresia Biliar/patologia , Biomarcadores , Modelos Animais de Doenças , Expressão Gênica , Modelos Biológicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
EMBO J ; 37(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29449322

RESUMO

Natural killer (NK) cells are a powerful weapon against viral infections and tumor growth. Although the actin-myosin (actomyosin) cytoskeleton is crucial for a variety of cellular processes, the role of mechanotransduction, the conversion of actomyosin mechanical forces into signaling cascades, was never explored in NK cells. Here, we demonstrate that actomyosin retrograde flow (ARF) controls the immune response of primary human NK cells through a novel interaction between ß-actin and the SH2-domain-containing protein tyrosine phosphatase-1 (SHP-1), converting its conformation state, and thereby regulating NK cell cytotoxicity. Our results identify ARF as a master regulator of the NK cell immune response. Since actin dynamics occur in multiple cellular processes, this mechanism might also regulate the activity of SHP-1 in additional cellular systems.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Células Matadoras Naturais/imunologia , Mecanotransdução Celular/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Actomiosina/metabolismo , Células Cultivadas , Humanos , Conformação Proteica , Transdução de Sinais/imunologia
5.
ACS Chem Biol ; 13(1): 100-109, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29215267

RESUMO

Wiskott-Aldrich syndrome protein (WASp) is exclusively expressed in hematopoietic cells and responsible for actin-dependent processes, including cellular activation, migration, and invasiveness. The C-terminal domain of WASp-Interacting Protein (WIP) binds to WASp and regulates its activity by shielding it from degradation in a phosphorylation dependent manner as we previously demonstrated. Mutations in the WAS-encoding gene lead to the primary immunodeficiencies Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). Here, we shed a first structural light upon this function of WIP using nuclear magnetic resonance (NMR) and in vivo molecular imaging. Coexpression of fragments WASp(20-158) and WIP(442-492) allowed the purification and structural characterization of a natively folded complex, determined to form a characteristic pleckstrin homology domain with a mixed α/ß-fold and central two-winged ß-sheet. The WIP-derived peptide, unstructured in its free form, wraps around and interacts with WASp through short structural elements. Förster resonance energy transfer (FRET) and biochemical experiments demonstrated that, of these elements, WIP residues 454-456 are the major contributor to WASp affinity, and the previously overlooked residues 449-451 were found to have the largest effect upon WASp ubiquitylation and, presumably, degradation. Results obtained from this complementary combination of technologies link WIP-WASp affinity to protection from degradation. Our findings about the nature of WIP·WASp complex formation are relevant for ongoing efforts to understand hematopoietic cell behavior, paving the way for new therapeutic approaches to WAS and XLT.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/química , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Sítios de Ligação , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/imunologia , Epitopos , Transferência Ressonante de Energia de Fluorescência , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Células Jurkat , Espectroscopia de Ressonância Magnética , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Imagem Molecular/métodos , Complexos Multiproteicos , Mutação , Domínios Proteicos , Dobramento de Proteína , Ubiquitinação , Proteína da Síndrome de Wiskott-Aldrich/genética
6.
Sci Signal ; 9(429): ra54, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27221712

RESUMO

Natural killer (NK) cells discriminate between healthy cells and virally infected or transformed self-cells by tuning activating and inhibitory signals received through cell surface receptors. Inhibitory receptors inhibit NK cell function by recruiting and activating the tyrosine phosphatase Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-1 (SHP-1) to the plasma membrane. However, to date, the guanine nucleotide exchange factor VAV1 is the only direct SHP-1 substrate identified in NK cells. We reveal that the adaptor protein linker for activation of T cells (LAT) as well as phospholipase C-γ1 (PLC-γ1) and PLC-γ2 are SHP-1 substrates. Dephosphorylation of Tyr(132) in LAT by SHP-1 in NK cells abrogated the recruitment of PLC-γ1 and PLC-γ2 to the immunological synapse between the NK cell and a cancer cell target, which reduced NK cell degranulation and target cell killing. Furthermore, the ubiquitylation of LAT by the E3 ubiquitin ligases c-Cbl and Cbl-b, which was induced by LAT phosphorylation, led to the degradation of LAT in response to the engagement of inhibitory receptors on NK cells, which abrogated NK cell cytotoxicity. Knockdown of the Cbl proteins blocked LAT ubiquitylation, which promoted NK cell function. Expression of a ubiquitylation-resistant mutant LAT blocked inhibitory receptor signaling, enabling cells to become activated. Together, these data identify previously uncharacterized SHP-1 substrates and inhibitory mechanisms that determine the response of NK cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Matadoras Naturais/citologia , Proteínas de Membrana/metabolismo , Fosfolipase C gama/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Cálcio/metabolismo , Linhagem Celular , DNA/metabolismo , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Humanos , Processamento de Imagem Assistida por Computador , Células Matadoras Naturais/metabolismo , Ativação Linfocitária , Microscopia Confocal , Mutagênese , Mutação , Fosforilação , Ligação Proteica , Interferência de RNA , Receptores KIR2DL1/metabolismo , Transfecção , Ubiquitina/metabolismo
7.
Int J Mol Sci ; 13(6): 7629-7647, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837718

RESUMO

Actin polymerization is a fundamental cellular process regulating immune cell functions and the immune response. The Wiskott-Aldrich syndrome protein (WASp) is an actin nucleation promoting factor, which is exclusively expressed in hematopoietic cells, where it plays a key regulatory role in cytoskeletal dynamics. WASp interacting protein (WIP) was first discovered as the binding partner of WASp, through the use of the yeast two hybrid system. WIP was later identified as a chaperone of WASp, necessary for its stability. Mutations occurring at the WASp homology 1 domain (WH1), which serves as the WIP binding site, were found to cause the Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT). WAS manifests as an immune deficiency characterized by eczema, thrombocytopenia, recurrent infections, and hematopoietic malignancies, demonstrating the importance of WIP for WASp complex formation and for a proper immune response. WIP deficiency was found to lead to different abnormalities in the activity of various lymphocytes, suggesting differential cell-dependent roles for WIP. Additionally, WIP deficiency causes cellular abnormalities not found in WASp-deficient cells, indicating that WIP fulfills roles beyond stabilizing WASp. Indeed, WIP was shown to interact with various binding partners, including the signaling proteins Nck, CrkL and cortactin. Recent studies have demonstrated that WIP also takes part in non immune cellular processes such as cancer invasion and metastasis, in addition to cell subversion by intracellular pathogens. Understanding of numerous functions of WIP can enhance our current understanding of activation and function of immune and other cell types.


Assuntos
Actinas/imunologia , Proteínas do Citoesqueleto/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Transdução de Sinais/imunologia , Actinas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Cortactina/genética , Cortactina/imunologia , Proteínas do Citoesqueleto/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/imunologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/imunologia , Transdução de Sinais/genética , Trombocitopenia/genética , Trombocitopenia/imunologia , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/imunologia , Proteína da Síndrome de Wiskott-Aldrich/genética , Proteína da Síndrome de Wiskott-Aldrich/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA