Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Mol Biol ; 436(11): 168589, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677494

RESUMO

UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch. Although this interdependence is well-established, the precise mechanism of activation and the specific MutL-UvrD interactions that trigger helicase activity remain elusive. To address these questions, we employed site-specific crosslinking techniques using single-cysteine variants of MutL and UvrD followed by functional assays. Our investigation unveils that the C-terminal domain of MutL not only engages with UvrD but also acts as a self-sufficient activator of UvrD helicase activity on DNA substrates with 3'-single-stranded tails. Especially when MutL is covalently attached to the 2B or 1B domain the tail length can be reduced to a minimal substrate of 5 nucleotides without affecting unwinding efficiency.


Assuntos
DNA Helicases , Proteínas MutL , DNA/química , DNA Helicases/química , DNA Helicases/genética , Proteínas MutL/química , Proteínas MutL/genética , Ligação Proteica , Domínios Proteicos , Mesilatos/química , Reagentes de Ligações Cruzadas/química
2.
ChemistryOpen ; : e202300181, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38088585

RESUMO

In previous works, we demonstrated that tertiary 3-chloropiperidines are potent chemotherapeutics, alkylating the DNA through the formation of bicyclic aziridinium ions. Herein, we report the synthesis of novel secondary 3-chloropiperidine analogues. The synthesis incorporates a new procedure to monochlorinate unsaturated primary amines utilizing N-chlorosuccinimide, while carefully monitoring the temperature to prevent dichlorination. Furthermore, we successfully isolated highly strained bicyclic aziridines by treating the secondary 3-chloropiperidines with a sufficient amount of base. We conclude this work with a DNA cleavage assay as a proof of principle, comparing our previously known substrates to the novel compounds. In this, the secondary 3-chloropiperidine as well as the isolated bicyclic aziridine, proved to be more effective than their tertiary counterpart.

3.
Molecules ; 27(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458636

RESUMO

Covalent protein capture (cross-linking) by reactive DNA derivatives makes it possible to investigate structural features by fixing complexes at different stages of DNA-protein recognition. The most common cross-linking methods are based on reactive groups that interact with native or engineered cysteine residues. Nonetheless, high reactivity of most of such groups leads to preferential fixation of early-stage complexes or even non-selective cross-linking. We synthesised a set of DNA reagents carrying an acrylamide group attached to the C5 atom of a 2'-deoxyuridine moiety via various linkers and studied cross-linking with MutS as a model protein. MutS scans DNA for mismatches and damaged nucleobases and can form multiple non-specific complexes with DNA that may cause non-selective cross-linking. By varying the length of the linker between DNA and the acrylamide group and by changing the distance between the reactive nucleotide and a mismatch in the duplex, we showed that cross-linking occurs only if the distance between the acrylamide group and cysteine is optimal within the DNA-protein complex. Thus, acrylamide-modified DNA duplexes are excellent tools for studying DNA-protein interactions because of high selectivity of cysteine trapping.


Assuntos
Cisteína , Proteínas de Escherichia coli , Acrilamida , Pareamento Incorreto de Bases , Cisteína/química , DNA/química , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteínas
4.
Nat Struct Mol Biol ; 29(1): 59-66, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013597

RESUMO

DNA mismatch repair detects and corrects mismatches introduced during DNA replication. The protein MutS scans for mismatches and coordinates the repair cascade. During this process, MutS undergoes multiple conformational changes in response to ATP binding, hydrolysis and release, but how ATP induces the various MutS conformations is incompletely understood. Here we present four cryogenic electron microscopy structures of Escherichia coli MutS at sequential stages of the ATP hydrolysis cycle that reveal how ATP binding and hydrolysis induce closing and opening of the MutS dimer, respectively. Biophysical analysis demonstrates how DNA binding modulates the ATPase cycle by prevention of hydrolysis during scanning and mismatch binding, while preventing ADP release in the sliding clamp state. Nucleotide release is achieved when MutS encounters single-stranded DNA that is produced during removal of the daughter strand. The combination of ATP binding and hydrolysis and its modulation by DNA enables MutS to adopt the different conformations needed to coordinate the sequential steps of the mismatch repair cascade.


Assuntos
Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Reparo de Erro de Pareamento de DNA , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/ultraestrutura , Difosfato de Adenosina/metabolismo , Domínio Catalítico , Escherichia coli , Hidrólise , Modelos Moleculares , Ligação Proteica , Multimerização Proteica
5.
Biochimie ; 171-172: 43-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32061805

RESUMO

As no crystal structure of full-size MutL bound to DNA has been obtained up to date, in the present work we used crosslinking and Förster resonance energy transfer (FRET) assays for probing the putative DNA-binding center of MutL from Escherichia coli. Several single-cysteine MutL variants (scMutL) were used for site-specific crosslinking or fluorophore modification. The crosslinking efficiency between scMutL proteins and mismatched DNA modified with thiol-reactive probes correlated with the distances from the Cys residues to the DNA calculated from a model of MutS-MutL-DNA complex. FRET-based investigation of DNA binding with different scMutL variants clearly showed that the highest signals were detected for the variants MutL(T218C) and MutL(A251C) indicating closeness of the positions 218 and 251 to DNA in the MutL-DNA complex. Indeed, the Cys218 and Cys251 of scMutL were crosslinked to the reactive DNA with the highest yield demonstrating their proximity to DNA in the MutL-DNA complex. The presence of MutS increased the yield of conjugate formation between the MutL variants and the modified DNA due to tighter MutL-DNA interactions caused by MutS binding to MutL.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas MutL/química , Pareamento Incorreto de Bases , Escherichia coli/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Ligação Proteica
6.
Methods Enzymol ; 592: 77-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28668131

RESUMO

DNA mismatch repair (MMR) is necessary to prevent incorporation of polymerase errors into the newly synthesized DNA strand, as they would be mutagenic. In humans, errors in MMR cause a predisposition to cancer, called Lynch syndrome. The MMR process is performed by a set of ATPases that transmit, validate, and couple information to identify which DNA strand requires repair. To understand the individual steps in the repair process, it is useful to be able to study these large molecular machines structurally and functionally. However, the steps and states are highly transient; therefore, the methods to capture and enrich them are essential. Here, we describe how single-cysteine variants can be used for specific cross-linking and labeling approaches that allow trapping of relevant transient states. Analysis of these defined states in functional and structural studies is instrumental to elucidate the molecular mechanism of this important DNA MMR process.


Assuntos
Reagentes de Ligações Cruzadas/química , Cisteína/química , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/química , Escherichia coli/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Mutação Puntual , Conformação Proteica
7.
Elife ; 4: e06744, 2015 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-26163658

RESUMO

To avoid mutations in the genome, DNA replication is generally followed by DNA mismatch repair (MMR). MMR starts when a MutS homolog recognizes a mismatch and undergoes an ATP-dependent transformation to an elusive sliding clamp state. How this transient state promotes MutL homolog recruitment and activation of repair is unclear. Here we present a crystal structure of the MutS/MutL complex using a site-specifically crosslinked complex and examine how large conformational changes lead to activation of MutL. The structure captures MutS in the sliding clamp conformation, where tilting of the MutS subunits across each other pushes DNA into a new channel, and reorientation of the connector domain creates an interface for MutL with both MutS subunits. Our work explains how the sliding clamp promotes loading of MutL onto DNA, to activate downstream effectors. We thus elucidate a crucial mechanism that ensures that MMR is initiated only after detection of a DNA mismatch.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Proteínas MutL , Ligação Proteica , Conformação Proteica
8.
J Chromatogr A ; 1389: 19-27, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25746757

RESUMO

DNA metabolism is based on formation of different DNA-protein complexes which can adopt various conformations. To characterize functioning of such complexes, one needs a solution-based technique which allows fixing a complex in a certain transient conformation. The crosslinking approach is a popular tool for such studies. However, it is under debate if the protein components retain their natural activities in the resulting crosslinked complexes. In the present work we demonstrate the possibility of obtaining pure DNA conjugate with functionally active protein using as example MutS protein from Escherichia coli mismatch repair system. A conjugate of a chemically modified mismatch-containing DNA duplex with MutS is fixed by thiol-disulfide exchange reaction. To perform a reliable test of the protein activity in the conjugate, such conjugate must be thoroughly separated from the uncrosslinked protein and DNA prior to the test. In the present work, we employ anion exchange chromatography for this purpose for the first time and demonstrate this technique to be optimal for the conjugate purification. The activity test is a FRET-based detection of DNA unbending. We show experimentally that MutS in the conjugate retains its ability to unbend DNA in response to ATP addition and find out for the first time that the DNA unbending rate increases with increasing ATP concentration. Since the crosslinked complexes contain active MutS protein, they can be used in further experiments to investigate MutS interactions with other proteins of the mismatch repair system.


Assuntos
Bioquímica/métodos , DNA/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Escherichia coli/genética , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ligação Proteica
9.
PLoS One ; 9(8): e104963, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25133614

RESUMO

The DNA mismatch repair (MMR) system plays a crucial role in the prevention of replication errors and in the correction of some oxidative damages of DNA bases. In the present work the most abundant oxidized pyrimidine lesion, 5,6-dihydro-5,6-dihydroxythymidine (thymidine glycol, Tg) was tested for being recognized and processed by the E. coli MMR system, namely complex of MutS, MutL and MutH proteins. In a partially reconstituted MMR system with MutS-MutL-MutH proteins, G/Tg and A/Tg containing plasmids failed to provoke the incision of DNA. Tg residue in the 30-mer DNA duplex destabilized double helix due to stacking disruption with neighboring bases. However, such local structural changes are not important for E. coli MMR system to recognize this lesion. A lack of repair of Tg containing DNA could be due to a failure of MutS (a first acting protein of MMR system) to interact with modified DNA in a proper way. It was shown that Tg in DNA does not affect on ATPase activity of MutS. On the other hand, MutS binding affinities to DNA containing Tg in G/Tg and A/Tg pairs are lower than to DNA with a G/T mismatch and similar to canonical DNA. Peculiarities of MutS interaction with DNA was monitored by Förster resonance energy transfer (FRET) and fluorescence anisotropy. Binding of MutS to Tg containing DNAs did not result in the formation of characteristic DNA kink. Nevertheless, MutS homodimer orientation on Tg-DNA is similar to that in the case of G/T-DNA. In contrast to G/T-DNA, neither G/Tg- nor A/Tg-DNA was able to stimulate ADP release from MutS better than canonical DNA. Thus, Tg residue in DNA is unlikely to be recognized or processed by the E. coli MMR system. Probably, the MutS transformation to active "sliding clamp" conformation on Tg-DNA is problematic.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Bacteriano/genética , Escherichia coli/genética , Timidina/análogos & derivados , Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/química , Clivagem do DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/fisiologia , DNA Bacteriano/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Endodesoxirribonucleases/química , Endodesoxirribonucleases/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/fisiologia , Hidrólise , Proteínas MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Plasmídeos/química , Plasmídeos/genética , Ligação Proteica , Timidina/química , Timidina/genética
10.
Nucleic Acids Res ; 41(17): 8166-81, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23821665

RESUMO

The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.


Assuntos
Pareamento Incorreto de Bases , DNA/química , Proteínas de Escherichia coli/química , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
11.
Mol Biosyst ; 8(7): 1861-4, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22627921

RESUMO

The DNA repair protein MutS forms clamp-like structures on DNA that search for and recognize base mismatches leading to ATP-transformed signaling clamps. In this study, the mobile MutS clamps were trapped on DNA in a functional state using single-cysteine variants of MutS and thiol-modified homoduplex or heteroduplex DNA. This approach allows stabilization of various transient MutS-DNA complexes and will enable their structural and functional analysis.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Pareamento Incorreto de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Transdução de Sinais
12.
Nucleic Acids Res ; 39(18): 8052-64, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737427

RESUMO

The DNA mismatch repair protein MutS recognizes mispaired bases in DNA and initiates repair in an ATP-dependent manner. Understanding of the allosteric coupling between DNA mismatch recognition and two asymmetric nucleotide binding sites at opposing sides of the MutS dimer requires identification of the relevant MutS.mmDNA.nucleotide species. Here, we use native mass spectrometry to detect simultaneous DNA mismatch binding and asymmetric nucleotide binding to Escherichia coli MutS. To resolve the small differences between macromolecular species bound to different nucleotides, we developed a likelihood based algorithm capable to deconvolute the observed spectra into individual peaks. The obtained mass resolution resolves simultaneous binding of ADP and AMP.PNP to this ABC ATPase in the absence of DNA. Mismatched DNA regulates the asymmetry in the ATPase sites; we observe a stable DNA-bound state containing a single AMP.PNP cofactor. This is the first direct evidence for such a postulated mismatch repair intermediate, and showcases the potential of native MS analysis in detecting mechanistically relevant reaction intermediates.


Assuntos
Pareamento Incorreto de Bases , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Adenilil Imidodifosfato/metabolismo , Algoritmos , Sítios de Ligação , DNA/química , Dimerização , Nucleotídeos/metabolismo , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray
13.
J Biol Chem ; 286(19): 17326-37, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454657

RESUMO

The ternary complex comprising MutS, MutL, and DNA is a key intermediate in DNA mismatch repair. We used chemical cross-linking and fluorescence resonance energy transfer (FRET) to study the interaction between MutS and MutL and to shed light onto the structure of this complex. Via chemical cross-linking, we could stabilize this dynamic complex and identify the structural features of key events in DNA mismatch repair. We could show that in the complex between MutS and MutL the mismatch-binding and connector domains of MutS are in proximity to the N-terminal ATPase domain of MutL. The DNA- and nucleotide-dependent complex formation could be monitored by FRET using single cysteine variants labeled in the connector domain of MutS and the transducer domain of MutL, respectively. In addition, we could trap MutS after an ATP-induced conformational change by an intramolecular cross-link between Cys-93 of the mismatch-binding domain and Cys-239 of the connector domain.


Assuntos
Adenosina Trifosfatases/química , Reparo de Erro de Pareamento de DNA , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Regulação Bacteriana da Expressão Gênica , Proteína MutS de Ligação de DNA com Erro de Pareamento/química , Trifosfato de Adenosina/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Cisteína/química , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas MutL , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Terciária de Proteína , Ultracentrifugação
14.
Biochem J ; 435(1): 93-101, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21247408

RESUMO

Plant PM (plasma membrane) H+-ATPase, a major consumer of cellular ATP, is driven by the MgATP complex which may dissociate at low cytosolic Mg2+ activity. We investigated whether hydrolytic activity of PM H+-ATPase is inhibited at ATP concentrations exceeding the Mg2+ concentration. Activity in isolated maize PMs was measured at pH 6.5 in the presence of 5 mM Mg2+ (high) or 2 mM Mg2+ (low), whereas K+ was applied at concentrations of 155 mM (high) or 55 mM (low). In all experiments, with membrane vesicles either from roots or leaves, the enzyme activity decreased in the presence of Mg2+-free ATP. At inhibitory ATP concentrations, the activity was not influenced by the K+ concentration. The activity was restored after increasing the Mg2+ concentration. ATP inhibition also occurred at pH 7.5. Kinetic modelling shows that Mg2+-free ATP acted as a competitive inhibitor with a Ki in the range of the Km. Ki decreased by 75% at low K+ concentration. Ki was one order of magnitude lower at pH 7.5 compared with pH 6.5. The observed inhibition is consistent with a concept in which down-regulation of the cytosolic Mg2+ activity is involved in (phyto)hormonal stress responses.


Assuntos
Membrana Celular/enzimologia , Magnésio/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Transdução de Sinais , Zea mays/enzimologia , Zea mays/metabolismo , Trifosfato de Adenosina/metabolismo , Ligação Competitiva , Biocatálise , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Modelos Biológicos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Potássio/metabolismo
15.
Mol Cell ; 39(1): 145-51, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603082

RESUMO

DNA mismatch repair corrects errors that have escaped polymerase proofreading, increasing replication fidelity 100- to 1000-fold in organisms ranging from bacteria to humans. The MutL protein plays a central role in mismatch repair by coordinating multiple protein-protein interactions that signal strand removal upon mismatch recognition by MutS. Here we report the crystal structure of the endonuclease domain of Bacillus subtilis MutL. The structure is organized in dimerization and regulatory subdomains connected by a helical lever spanning the conserved endonuclease motif. Additional conserved motifs cluster around the lever and define a Zn(2+)-binding site that is critical for MutL function in vivo. The structure unveils a powerful inhibitory mechanism to prevent undesired nicking of newly replicated DNA and allows us to propose a model describing how the interaction with MutS and the processivity clamp could license the endonuclease activity of MutL. The structure also provides a molecular framework to propose and test additional roles of MutL in mismatch repair.


Assuntos
Adenosina Trifosfatases/química , Bacillus subtilis/enzimologia , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Reparo de Erro de Pareamento de DNA , Endonucleases/química , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Zinco/metabolismo
16.
Hum Mutat ; 31(8): 975-82, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20533529

RESUMO

Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome that predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased coexpression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Trifosfatases/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Mutação/genética , Proteínas Nucleares/genética , Multimerização Proteica/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos/genética , Linhagem Celular , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Imunoprecipitação , Endonuclease PMS2 de Reparo de Erro de Pareamento , Modelos Moleculares , Proteína 1 Homóloga a MutL , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína
17.
Biochem J ; 423(2): 265-77, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19656086

RESUMO

The mutL gene of Neisseria gonorrhoeae has been cloned and the gene product purified. We have found that the homodimeric N. gonorrhoeae MutL (NgoL) protein displays an endonuclease activity that incises covalently closed circular DNA in the presence of Mn(2+), Mg(2+) or Ca(2+) ions, unlike human MutLalpha which shows endonuclease activity only in the presence of Mn(2+). We report in the present paper that the C-terminal domain of N. gonorrhoeae MutL (NgoL-CTD) consisting of amino acids 460-658 exhibits Mn(2+)-dependent endonuclease activity. Sedimentation velocity, sedimentation equilibrium and dynamic light scattering experiments show NgoL-CTD to be a dimer. The probable endonucleolytic active site is localized to a metal-binding motif, DMHAX2EX4E, and the nicking endonuclease activity is dependent on the integrity of this motif. By in vitro comparison of wild-type and a mutant NgoL-CTD protein, we show that the latter protein exhibits highly reduced endonuclease activity. We therefore suggest that the mode of excision initiation in DNA mismatch repair may be different in organisms that lack MutH protein, but have MutL proteins that harbour the D[M/Q]HAX2EX4E motif.


Assuntos
Endonucleases/química , Endonucleases/metabolismo , Neisseria gonorrhoeae/enzimologia , Adenosina Trifosfatases/análise , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , DNA/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Endonucleases/genética , Endonucleases/fisiologia , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/genética , Teste de Complementação Genética , Dados de Sequência Molecular , Proteínas MutL , Neisseria gonorrhoeae/genética , Fenótipo , Ligação Proteica , Multimerização Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos
18.
Nucleic Acids Res ; 37(13): 4453-63, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19474347

RESUMO

DNA mismatch repair (MMR) and very-short patch (VSP) repair are two pathways involved in the repair of T:G mismatches. To learn about competition and cooperation between these two repair pathways, we analyzed the physical and functional interaction between MutL and Vsr using biophysical and biochemical methods. Analytical ultracentrifugation reveals a nucleotide-dependent interaction between Vsr and the N-terminal domain of MutL. Using chemical crosslinking, we mapped the interaction site of MutL for Vsr to a region between the N-terminal domains similar to that described before for the interaction between MutL and the strand discrimination endonuclease MutH of the MMR system. Competition between MutH and Vsr for binding to MutL resulted in inhibition of the mismatch-provoked MutS- and MutL-dependent activation of MutH, which explains the mutagenic effect of Vsr overexpression. Cooperation between MMR and VSP repair was demonstrated by the stimulation of the Vsr endonuclease in a MutS-, MutL- and ATP-hydrolysis-dependent manner, in agreement with the enhancement of VSP repair by MutS and MutL in vivo. These data suggest a mobile MutS-MutL complex in MMR signalling, that leaves the DNA mismatch prior to, or at the time of, activation of downstream effector molecules such as Vsr or MutH.


Assuntos
Adenosina Trifosfatases/metabolismo , Reparo de Erro de Pareamento de DNA , Endodesoxirribonucleases/metabolismo , Proteínas de Escherichia coli/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/efeitos da radiação , Reagentes de Ligações Cruzadas , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/efeitos da radiação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/efeitos da radiação , Proteínas MutL , Proteína MutS de Ligação de DNA com Erro de Pareamento/metabolismo , Processos Fotoquímicos , Estrutura Terciária de Proteína , Ultracentrifugação
19.
J Mol Biol ; 382(3): 610-27, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18619468

RESUMO

DNA mismatch repair (MMR) is responsible for correcting replication errors. MutLalpha, one of the main players in MMR, has been recently shown to harbor an endonuclease/metal-binding activity, which is important for its function in vivo. This endonuclease activity has been confined to the C-terminal domain of the hPMS2 subunit of the MutLalpha heterodimer. In this work, we identify a striking sequence-structure similarity of hPMS2 to the metal-binding/dimerization domain of the iron-dependent repressor protein family and present a structural model of the metal-binding domain of MutLalpha. According to our model, this domain of MutLalpha comprises at least three highly conserved sequence motifs, which are also present in most MutL homologs from bacteria that do not rely on the endonuclease activity of MutH for strand discrimination. Furthermore, based on our structural model, we predict that MutLalpha is a zinc ion binding protein and confirm this prediction by way of biochemical analysis of zinc ion binding using the full-length and C-terminal domain of MutLalpha. Finally, we demonstrate that the conserved residues of the metal ion binding domain are crucial for MMR activity of MutLalpha in vitro.


Assuntos
Adenosina Trifosfatases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ferro/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Proteínas Repressoras/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Reparo de Erro de Pareamento de DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/classificação , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/genética , Dimerização , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento , Modelos Moleculares , Dados de Sequência Molecular , Proteínas MutL , Filogenia , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/classificação , Subunidades Proteicas/genética , Proteínas Repressoras/química , Proteínas Repressoras/classificação , Proteínas Repressoras/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Zinco/metabolismo
20.
Nucleic Acids Res ; 34(22): 6574-86, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17135187

RESUMO

MutLalpha, a heterodimer of MLH1 and PMS2, plays a central role in human DNA mismatch repair. It interacts ATP-dependently with the mismatch detector MutSalpha and assembles and controls further repair enzymes. We tested if the interaction of MutLalpha with DNA-bound MutSalpha is impaired by cancer-associated mutations in MLH1, and identified one mutation (Ala128Pro) which abolished interaction as well as mismatch repair activity. Further examinations revealed three more residues whose mutation interfered with interaction. Homology modelling of MLH1 showed that all residues clustered in a small accessible surface patch, suggesting that the major interaction interface of MutLalpha for MutSalpha is located on the edge of an extensive beta-sheet that backs the MLH1 ATP binding pocket. Bioinformatic analysis confirmed that this patch corresponds to a conserved potential protein-protein interaction interface which is present in both human MLH1 and its E.coli homologue MutL. MutL could be site-specifically crosslinked to MutS from this patch, confirming that the bacterial MutL-MutS complex is established by the corresponding interface in MutL. This is the first study that identifies the conserved major MutLalpha-MutSalpha interaction interface in MLH1 and demonstrates that mutations in this interface can affect interaction and mismatch repair, and thereby can also contribute to cancer development.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Mutação , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Transporte/química , Linhagem Celular , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , Proteína 1 Homóloga a MutL , Proteínas MutL , Proteínas Nucleares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA