Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Glia ; 71(10): 2372-2382, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37335016

RESUMO

In the retina, microglia are resident immune cells that are essential for development and function. Retinal microglia play a central role in mediating pathological degeneration in diseases such as glaucoma, retinitis pigmentosa, age-related neurodegeneration, ischemic retinopathy, and diabetic retinopathy. Current models of mature human retinal organoids (ROs) derived from iPS cell (hiPSC) do not contain resident microglia integrated into retinal layers. Increasing cellular diversity in ROs by including resident microglia would more accurately represent the native retina and better model diseases in which microglia play a key role. In this study, we develop a new 3D in vitro tissue model of microglia-containing retinal organoids by co-culturing ROs and hiPSC-derived macrophage precursor cells (MPCs). We optimized the parameters for successful integration of MPCs into retinal organoids. We show that while in the ROs, MPCs migrate to the equivalent of the outer plexiform layer where retinal microglia cells reside in healthy retinal tissue. While there, they develop a mature morphology characterized by small cell bodies and long branching processes which is only observed in vivo. During this maturation process these MPCs cycle through an activated phase followed by a stable mature microglial phase as seen by the down regulation of pro-inflammatory cytokines and upregulation of anti-inflammatory cytokines. Finally, we characterized mature ROs with integrated MPCs using RNAseq showing an enrichment of cell-type specific microglia markers. We propose that this co-culture system may be useful for understanding the pathogenesis of retinal diseases involving retinal microglia and for drug discovery directly in human tissue.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Retinianas , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Retina , Doenças Retinianas/patologia , Organoides/patologia , Macrófagos/patologia , Citocinas/metabolismo
2.
J Clin Invest ; 133(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115691

RESUMO

Patient-derived induced pluripotent stem cells (iPSCs) provide a powerful tool for identifying cellular and molecular mechanisms of disease. Macular telangiectasia type 2 (MacTel) is a rare, late-onset degenerative retinal disease with an extremely heterogeneous genetic architecture, lending itself to the use of iPSCs. Whole-exome sequencing screens and pedigree analyses have identified rare causative mutations that account for less than 5% of cases. Metabolomic surveys of patient populations and GWAS have linked MacTel to decreased circulating levels of serine and elevated levels of neurotoxic 1-deoxysphingolipids (1-dSLs). However, retina-specific, disease-contributing factors have yet to be identified. Here, we used iPSC-differentiated retinal pigmented epithelial (iRPE) cells derived from donors with or without MacTel to screen for novel cell-intrinsic pathological mechanisms. We show that MacTel iRPE cells mimicked the low serine levels observed in serum from patients with MacTel. Through RNA-Seq and gene set enrichment pathway analysis, we determined that MacTel iRPE cells are enriched in cellular stress pathways and dysregulation of central carbon metabolism. Using respirometry and mitochondrial stress testing, we functionally validated that MacTel iRPE cells had a reduction in mitochondrial function that was independent of defects in serine biosynthesis and 1-dSL accumulation. Thus, we identified phenotypes that may constitute alternative disease mechanisms beyond the known serine/sphingolipid pathway.


Assuntos
Retinopatia Diabética , Células-Tronco Pluripotentes Induzidas , Telangiectasia Retiniana , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Telangiectasia Retiniana/metabolismo , Telangiectasia Retiniana/patologia , Retinopatia Diabética/metabolismo , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Serina/metabolismo
3.
Glia ; 70(9): 1762-1776, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35611927

RESUMO

Retinal neovascularization (NV) is the major cause of severe visual impairment in patients with ischemic eye diseases. While it is known that retinal microglia contribute to both physiological and pathological angiogenesis, the molecular mechanisms by which these glia regulate pathological NV have not been fully elucidated. In this study, we utilized a retinal microglia-specific Transforming Growth Factor-ß (Tgfß) receptor knock out mouse model and human iPSC-derived microglia to examine the role of Tgfß signaling in activated microglia during retinal NV. Using a tamoxifen-inducible, microglia-specific Tgfß receptor type 2 (Tgfßr2) knockout mouse [Tgfßr2 KO (ΔMG)] we show that Tgfß signaling in microglia actively represses leukostasis in retinal vessels. Furthermore, we show that Tgfß signaling represses expression of the pro-angiogenic factor, Insulin-like growth factor 1 (Igf1), independent of Vegf regulation. Using the mouse model of oxygen-induced retinopathy (OIR) we show that Tgfß signaling in activated microglia plays a role in hypoxia-induced NV where a loss in Tgfß signaling microglia exacerbates and prolongs retinal NV in OIR. Using human iPSC-derived microglia cells in an in vitro assay, we validate the role of Transforming Growth Factor-ß1 (Tgfß1) in regulating Igf1 expression in hypoxic conditions. Finally, we show that Tgfß signaling in microglia is essential for microglial homeostasis and that the disruption of Tgfß signaling in microglia exacerbates retinal NV in OIR by promoting leukostasis and Igf1 expression.


Assuntos
Leucostasia , Doenças Retinianas , Neovascularização Retiniana , Animais , Modelos Animais de Doenças , Hipóxia/complicações , Hipóxia/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Leucostasia/complicações , Leucostasia/metabolismo , Leucostasia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Neovascularização Patológica/metabolismo , Oxigênio/metabolismo , Doenças Retinianas/metabolismo , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Fator de Crescimento Transformador beta/metabolismo
4.
Cytokine ; 143: 155542, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33926775

RESUMO

Interferon-γ (IFNG) is one of the key cytokines that regulates both innate and adaptive immune responses in the body. However, the role of IFNG in the regulation of vascularization, especially in the context of Vascular endothelial growth factor A (VEGFa)-induced angiogenesis is not clarified. Here, we report that IFNG shows potent anti-angiogenic potential against VEGFa-induced angiogenesis. IFNG significantly inhibited proliferation, migration, and tube formation of Human umbilical vein endothelial cells (HUVECs) both under basal and VEGFa-treated conditions. Intriguingly, Knockdown (KD) of STAT1 abolished the inhibitory effect of IFNG on VEGFa-induced angiogenic processes in HUVECs. Furthermore, IFNG exhibited potent anti-angiogenic efficacy in the mouse model of oxygen-induced retinopathy (OIR), an in vivo model for hypoxia-induced retinal neovascularization, without induction of functional side effects. Taken together, these results show that IFNG plays a crucial role in the regulation of VEGFa-dependent angiogenesis, suggesting its potential therapeutic applicability in neovascular diseases.


Assuntos
Interferon gama/uso terapêutico , Isquemia/complicações , Neovascularização Retiniana/complicações , Neovascularização Retiniana/tratamento farmacológico , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hipóxia/complicações , Interferon gama/administração & dosagem , Interferon gama/farmacologia , Injeções Intravítreas , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Neovascularização Retiniana/fisiopatologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 117(45): 28297-28306, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106407

RESUMO

Retinal neovascularization (NV), a leading cause of vision loss, results from localized hypoxia that stabilizes the hypoxia-inducible transcription factors HIF-1α and HIF-2α, enabling the expression of angiogenic factors and genes required to maintain homeostasis under conditions of oxygen stress. HIF transcriptional activity depends on the interaction between its intrinsically disordered C-terminal domain and the transcriptional coactivators CBP/p300. Much effort is currently directed at disrupting protein-protein interactions between disease-associated transcription factors like HIF and their cellular partners. The intrinsically disordered protein CITED2, a direct product of HIF-mediated transcription, functions as a hypersensitive negative regulator that attenuates the hypoxic response by competing allosterically with HIF-1α for binding to CBP/p300. Here, we show that a peptide fragment of CITED2 is taken up by retinal cells and efficiently regulates pathological angiogenesis in murine models of ischemic retinopathy. Both vaso-obliteration (VO) and NV were significantly inhibited in an oxygen-induced retinopathy (OIR) model following intravitreal injection of the CITED2 peptide. The CITED2 peptide localized to retinal neurons and glia, resulting in decreased expression of HIF target genes. Aflibercept, a commonly used anti-VEGF therapy for retinal neovascular diseases, rescued NV but not VO in OIR. However, a combination of the CITED2 peptide and a reduced dose of aflibercept significantly decreased both NV and VO. In contrast to anti-VEGF agents, the CITED2 peptide can rescue hypoxia-induced retinal NV by modulating the hypoxic response through direct competition with HIF for CBP/p300, suggesting a dual targeting strategy for treatment of ischemic retinal diseases and other neovascular disorders.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Hipóxia/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Neovascularização Retiniana/metabolismo , Transativadores/metabolismo , Animais , Proteína p300 Associada a E1A/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/genética , Transativadores/genética , Fatores de Transcrição de p300-CBP/metabolismo
6.
Invest Ophthalmol Vis Sci ; 61(10): 20, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32780864

RESUMO

Purpose: Ciliary neurotrophic factor (CNTF) is a well-characterized neurotrophic factor currently in clinical trials for the treatment of macular telangiectasia type II. Our previous work showed that CNTF-induced STAT3 signaling is a potent inhibitor of pathologic preretinal neovascular tuft formation in the mouse model of oxygen-induced retinopathy. In this study, we investigated the effect of CNTF on outer retinal and choroidal angiogenesis and the mechanisms that underpin the observed decrease in outer retinal neovascularization following CNTF treatment. Methods: In the Vldlr-/- and laser-CNV mouse models, mice received a one-time injection (on postnatal day [P] 12 in the Vldlr-/- model and 1 day after laser in the Choroidal Neovascularization (CNV) model) of recombinant CNTF or CxCl10, and the extent of neovascular lesions was assessed 6 days posttreatment. STAT3 downstream targets affected by CNTF treatment were identified using quantitative PCR analysis. A proteome array was used to compare media conditioned by CNTF-treated and control-treated primary Müller cells to screen for CNTF-induced changes in secreted angiogenic factors. Results: Intravitreal treatment with recombinant CNTF led to significant reduction in neovascularization in the Vldlr-/- and laser-CNV mouse models. Treatment effect in the Vldlr-/- was long-lasting but time sensitive, requiring intravitreal treatment before P19. Mechanistic workup in vitro as well as in vivo confirmed significant activation of the STAT3-signaling pathway in Müller cells in response to CNTF treatment and upregulation of CxCl10. Intravitreal injections of recombinant CxCl10 significantly reduced outer retinal neovascularization in vivo in both the Vldlr-/- and laser-CNV mouse models. Conclusions: CNTF treatment indirectly affects outer retinal and choroidal neovascularization by inducing CxCl10 secretion from retinal Müller cells.


Assuntos
Quimiocina CXCL10/metabolismo , Fator Neurotrófico Ciliar/uso terapêutico , Neovascularização Retiniana/prevenção & controle , Animais , Western Blotting , Células Cultivadas , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Neovascularização de Coroide/prevenção & controle , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Células Ependimogliais , Imuno-Histoquímica , Fotocoagulação a Laser , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Fator de Transcrição STAT3/metabolismo , Regulação para Cima
7.
JCI Insight ; 5(12)2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32437334

RESUMO

Abnormal subretinal neovascularization is a characteristic of vision-threatening retinal diseases, including macular telangiectasia (MacTel) and retinal angiomatous proliferation (RAP). Subretinal neovascular tufts and photoreceptor dysfunction are observed in very-low-density lipoprotein receptor (Vldlr-/-) mutant mice. These changes mirror those observed in patients with MacTel and RAP, but the pathogenesis is largely unknown. In this study, we show that retinal microglia were closely associated with retinal neovascular tufts in Vldlr-/- mice and retinal tissue from patients with MacTel; ablation of microglia/macrophages dramatically prevented formation of retinal neovascular tufts and improved neuronal function, as assessed by electroretinography. Vldlr-/- mice with retinal pigmented epithelium-specific (RPE-specific) Vegfa had greatly reduced subretinal infiltration of microglia/macrophages, subsequently reducing neovascular tufts. These findings highlight the contribution of microglia/macrophages to the pathogenesis of neovascularization, provide valuable clues regarding potential causative cellular mechanisms for subretinal neovascularization in patients with MacTel and RAP and suggest that targeting microglia activation may be a therapeutic option in these diseases.


Assuntos
Degeneração Macular/patologia , Microglia/patologia , Neovascularização Retiniana/patologia , Epitélio Pigmentado da Retina/patologia , Animais , Modelos Animais de Doenças , Camundongos Knockout , Neovascularização Patológica/patologia , Retina/patologia , Vasos Retinianos/patologia
9.
Glia ; 67(2): 332-344, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30484883

RESUMO

Ischemia-induced angiogenesis contributes to various neuronal and retinal diseases, and often results in neurodegeneration and visual impairment. Current treatments involve the use of anti-VEGF agents but are not successful in all cases. In this study we determined that miR-30a-5p is another important mediator of retinal angiogenesis. Using a rodent model of ischemic retinopathy, we show that inhibiting miR-30a-5p reduces neovascularization and promotes tissue repair, through modulation of microglial and endothelial cell cross-talk. miR-30a-5p inhibition results in increased expression of the death receptor Fas and CCL2, to decrease endothelial cell survival and promote microglial migration and phagocytic function in focal regions of ischemic injury. Our data suggest that miR-30a-5p inhibition accelerates tissue repair by enhancing FasL-Fas crosstalk between microglia and endothelial cells, to promote endothelial cell apoptosis and removal of dead endothelial cells. Finally, we found that miR-30a levels were increased in the vitreous of patients with proliferative diabetic retinopathy. Our study identifies a role for miR-30a in the pathogenesis of neovascular retinal disease by modulating microglial and endothelial cell function, and suggests it may be a therapeutic target to treat ischemia-mediated conditions.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Microglia/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , Receptor fas/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Lectinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Interferência de RNA/fisiologia , RNA Mensageiro/metabolismo
10.
Ophthalmology ; 124(7): 926-934, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28365209

RESUMO

The National Eye Institute launched the Audacious Goals Initiative (AGI) in 2013 with the aim "to restore vision through the regeneration of neurons and neural connections in the eye and visual system." An AGI Town Hall held at the Association for Research in Vision and Ophthalmology Annual Meeting in 2016 brought together basic, translational, and clinical scientists to address the clinical implications of the AGI, with a particular emphasis on diseases amenable to regenerative medicine and strategies to deal with barriers to progess. An example of such a barrier is that replacement of lost neurons may be insufficient because damage to other neurons and non-neuronal cells is common in retinal and optic nerve disease. Reparative processes such as gliosis and fibrosis also can make it difficult to replenish and regenerate neurons. Other issues include choice of animal models, selecting appropriate endpoints, ethics of informed consent, and regulatory issues. Another area critical to next steps in the AGI is the choice of target diseases and the stage at which early development studies should be focused. For example, an advantage of doing clinical trials in patients with early disease is that supporting cellular and structural constituents are still likely to be present. However, regenerative studies in patients with late disease make it easier to detect the effects of replacement therapy against the background of severe visual loss, whereas it may be harder to detect incremental improvement in visual function in those with early disease and considerable remaining visual function. Achieving the goals of the AGI also requires preclinical advances, new imaging techniques, and optimizing translational issues. The work of the AGI is expected to take at least 10 years but should eventually result in therapies to restore some degree of vision to the blind.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/tendências , Objetivos , Oftalmologia/métodos , Doenças do Nervo Óptico/terapia , Animais , Humanos , National Eye Institute (U.S.) , Estados Unidos
11.
J Clin Invest ; 127(1): 199-214, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27918307

RESUMO

Outer retinal and renal glomerular functions rely on specialized vasculature maintained by VEGF that is produced by neighboring epithelial cells, the retinal pigment epithelium (RPE) and podocytes, respectively. Dysregulation of RPE- and podocyte-derived VEGF is associated with neovascularization in wet age-related macular degeneration (ARMD), choriocapillaris degeneration, and glomerular thrombotic microangiopathy (TMA). Since complement activation and genetic variants in inhibitory complement factor H (CFH) are also features of both ARMD and TMA, we hypothesized that VEGF and CFH interact. Here, we demonstrated that VEGF inhibition decreases local CFH and other complement regulators in the eye and kidney through reduced VEGFR2/PKC-α/CREB signaling. Patient podocytes and RPE cells carrying disease-associated CFH genetic variants had more alternative complement pathway deposits than controls. These deposits were increased by VEGF antagonism, a common wet ARMD treatment, suggesting that VEGF inhibition could reduce cellular complement regulatory capacity. VEGF antagonism also increased markers of endothelial cell activation, which was partially reduced by genetic complement inhibition. Together, these results suggest that VEGF protects the retinal and glomerular microvasculature, not only through VEGFR2-mediated vasculotrophism, but also through modulation of local complement proteins that could protect against complement-mediated damage. Though further study is warranted, these findings could be relevant for patients receiving VEGF antagonists.


Assuntos
Fator H do Complemento/metabolismo , Proteínas do Olho/metabolismo , Podócitos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Idoso , Animais , Fator H do Complemento/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Olho/antagonistas & inibidores , Proteínas do Olho/genética , Feminino , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Degeneração Macular/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Masculino , Camundongos , Camundongos Knockout , Podócitos/patologia , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Epitélio Pigmentado da Retina/patologia , Microangiopatias Trombóticas/genética , Microangiopatias Trombóticas/metabolismo , Microangiopatias Trombóticas/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Sci Rep ; 6: 36659, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27834402

RESUMO

Macrophages, key cells of the innate immune system, are known to support angiogenesis but are not believed to directly form vessel walls. Here we show that macrophages structurally form primitive, NON-ENDOTHELIAL "vessels" or vascular mimicry (VM) channels in both tumor and angiogenesis in vivo models. These channels are functionally connected to the systemic vasculature as they are perfused by intravenously injected dye. Since both models share hypoxic micro-environments, we hypothesized that hypoxia may be an important mediator of VM formation. Indeed, conditional genetic depletion of myeloid-specific HIF-1α results in decreased VM network formation, dye perfusion and tumor size. Although the macrophage VM network shares some features with an endothelial vasculature, it is ultrastructurally different. Cancer stem cells have been shown to form vascular mimicry channels. Our data demonstrates that tumor-associated macrophages also form them. The identification of this novel type of vascular mimicry may help in the development of targeted cancer therapeutics.


Assuntos
Vasos Sanguíneos/imunologia , Macrófagos/imunologia , Células-Tronco Neoplásicas/imunologia , Animais , Vasos Sanguíneos/patologia , Hipóxia Celular/imunologia , Macrófagos/patologia , Camundongos , Camundongos Nus , Camundongos Transgênicos , Células-Tronco Neoplásicas/patologia
13.
Philos Trans A Math Phys Eng Sci ; 374(2079)2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27644974

RESUMO

Photoreceptor degeneration is characteristic of vision-threatening diseases including age-related macular degeneration. Photoreceptors are metabolically demanding cells in the retina, but specific details about their metabolic behaviours are unresolved. The quantitative metabolomics of retinal degeneration could provide valuable insights and inform future therapies. Here, we determined the metabolomic 'fingerprint' of healthy and dystrophic retinas in rat models using optimized metabolite extraction techniques. A number of classes of metabolites were consistently dysregulated during degeneration: vitamin A analogues, fatty acid amides, long-chain polyunsaturated fatty acids, acyl carnitines and several phospholipid species. For the first time, a distinct temporal trend of several important metabolites including DHA (4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid), all-trans-retinal and its toxic end-product N-retinyl-N-retinylidene-ethanolamine were observed between healthy and dystrophic retinas. In this study, metabolomics was further used to determine the temporal effects of the therapeutic intervention of grafting stem cell-derived retinal pigment epithelium (RPE) in dystrophic retinas, which significantly prevented photoreceptor atrophy in our previous studies. The result revealed that lipid levels such as phosphatidylethanolamine in eyes were restored in those animals receiving the RPE grafts. In conclusion, this study provides insight into the metabolomics of retinal degeneration, and further understanding of the efficacy of RPE transplantation.This article is part of the themed issue 'Quantitative mass spectrometry'.


Assuntos
Metabolômica , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/transplante , Células-Tronco/citologia , Animais , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Retinaldeído/metabolismo
14.
Nat Med ; 22(4): 439-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26974308

RESUMO

Tissues with high metabolic rates often use lipids, as well as glucose, for energy, conferring a survival advantage during feast and famine. Current dogma suggests that high-energy-consuming photoreceptors depend on glucose. Here we show that the retina also uses fatty acid ß-oxidation for energy. Moreover, we identify a lipid sensor, free fatty acid receptor 1 (Ffar1), that curbs glucose uptake when fatty acids are available. Very-low-density lipoprotein receptor (Vldlr), which is present in photoreceptors and is expressed in other tissues with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acid. In the retinas of Vldlr(-/-) mice with low fatty acid uptake but high circulating lipid levels, we found that Ffar1 suppresses expression of the glucose transporter Glut1. Impaired glucose entry into photoreceptors results in a dual (lipid and glucose) fuel shortage and a reduction in the levels of the Krebs cycle intermediate α-ketoglutarate (α-KG). Low α-KG levels promotes stabilization of hypoxia-induced factor 1a (Hif1a) and secretion of vascular endothelial growth factor A (Vegfa) by starved Vldlr(-/-) photoreceptors, leading to neovascularization. The aberrant vessels in the Vldlr(-/-) retinas, which invade normally avascular photoreceptors, are reminiscent of the vascular defects in retinal angiomatous proliferation, a subset of neovascular age-related macular degeneration (AMD), which is associated with high vitreous VEGFA levels in humans. Dysregulated lipid and glucose photoreceptor energy metabolism may therefore be a driving force in macular telangiectasia, neovascular AMD and other retinal diseases.


Assuntos
Ácidos Graxos/metabolismo , Degeneração Macular/metabolismo , Células Fotorreceptoras/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de LDL/metabolismo , Retina/metabolismo , Animais , Regulação da Expressão Gênica , Glucose/metabolismo , Humanos , Ácidos Cetoglutáricos/metabolismo , Metabolismo dos Lipídeos/genética , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Oxirredução , Células Fotorreceptoras/patologia , Receptores Acoplados a Proteínas G/biossíntese , Receptores de LDL/genética , Retina/patologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Elife ; 52016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26978795

RESUMO

Photoreceptors are the most numerous and metabolically demanding cells in the retina. Their primary nutrient source is the choriocapillaris, and both the choriocapillaris and photoreceptors require trophic and functional support from retinal pigment epithelium (RPE) cells. Defects in RPE, photoreceptors, and the choriocapillaris are characteristic of age-related macular degeneration (AMD), a common vision-threatening disease. RPE dysfunction or death is a primary event in AMD, but the combination(s) of cellular stresses that affect the function and survival of RPE are incompletely understood. Here, using mouse models in which hypoxia can be genetically triggered in RPE, we show that hypoxia-induced metabolic stress alone leads to photoreceptor atrophy. Glucose and lipid metabolism are radically altered in hypoxic RPE cells; these changes impact nutrient availability for the sensory retina and promote progressive photoreceptor degeneration. Understanding the molecular pathways that control these responses may provide important clues about AMD pathogenesis and inform future therapies.


Assuntos
Células Epiteliais/fisiologia , Hipóxia , Degeneração Macular/fisiopatologia , Células Fotorreceptoras/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Estresse Fisiológico , Animais , Modelos Animais de Doenças , Camundongos
16.
Stem Cells Int ; 2016: 8470263, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880994

RESUMO

Phototransduction is accomplished in the retina by photoreceptor neurons and retinal pigment epithelium (RPE) cells. Photoreceptors rely heavily on the RPE, and death or dysfunction of RPE is characteristic of age-related macular degeneration (AMD), a very common neurodegenerative disease for which no cure exists. RPE replacement is a promising therapeutic intervention for AMD, and large numbers of RPE cells can be generated from pluripotent stem cells. However, questions persist regarding iPSC-derived RPE (iPS-RPE) viability, immunogenicity, and tumorigenesis potential. We showed previously that iPS-RPE prevent photoreceptor atrophy in dystrophic rats up until 24 weeks after implantation. In this follow-up study, we longitudinally monitored the same implanted iPS-RPE, in the same animals. We observed no gross abnormalities in the eyes, livers, spleens, brains, and blood in aging rats with iPSC-RPE grafts. iPS-RPE cells that integrated into the subretinal space outlived the photoreceptors and survived for as long as 2 1/2 years while nonintegrating RPE cells were ingested by host macrophages. Both populations could be distinguished using immunohistochemistry and electron microscopy. iPSC-RPE could be isolated from the grafts and maintained in culture; these cells also phagocytosed isolated photoreceptor outer segments. We conclude that iPS-RPE grafts remain viable and do not induce any obvious associated pathological changes.

17.
Cell Stem Cell ; 17(3): 353-9, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26299572

RESUMO

The breakthrough of induced pluripotent stem cell (iPSC) technology has raised the possibility that patient-specific iPSCs may become a renewable source of autologous cells for cell therapy without the concern of immune rejection. However, the immunogenicity of autologous human iPSC (hiPSC)-derived cells is not well understood. Using a humanized mouse model (denoted Hu-mice) reconstituted with a functional human immune system, we demonstrate that most teratomas formed by autologous integration-free hiPSCs exhibit local infiltration of antigen-specific T cells and associated tissue necrosis, indicating immune rejection of certain hiPSC-derived cells. In this context, autologous hiPSC-derived smooth muscle cells (SMCs) appear to be highly immunogenic, while autologous hiPSC-derived retinal pigment epithelial (RPE) cells are immune tolerated even in non-ocular locations. This differential immunogenicity is due in part to abnormal expression of immunogenic antigens in hiPSC-derived SMCs, but not in hiPSC-derived RPEs. These findings support the feasibility of developing hiPSC-derived RPEs for treating macular degeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Animais , Antígenos/metabolismo , Diferenciação Celular , Humanos , Imunidade , Camundongos , Miócitos de Músculo Liso/imunologia , Epitélio Pigmentado da Retina/imunologia , Linfócitos T/imunologia , Teratoma/patologia , Transplante Autólogo
18.
J Vis Exp ; (97)2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-25867641

RESUMO

No cure has been discovered for age-related macular degeneration (AMD), the leading cause of vision loss in people over the age of 55. AMD is complex multifactorial disease with an unknown etiology, although it is largely thought to occur due to death or dysfunction of the retinal pigment epithelium (RPE), a monolayer of cells that underlies the retina and provides critical support for photoreceptors. RPE cell replacement strategies may hold great promise for providing therapeutic relief for a large subset of AMD patients, and RPE cells that strongly resemble primary human cells (hRPE) have been generated in multiple independent labs, including our own. In addition, the uses for iPS-RPE are not limited to cell-based therapies, but also have been used to model RPE diseases. These types of studies may not only elucidate the molecular bases of the diseases, but also serve as invaluable tools for developing and testing novel drugs. We present here an optimized protocol for directed differentiation of RPE from stem cells. Adding nicotinamide and either Activin A or IDE-1, a small molecule that mimics its effects, at specific time points, greatly enhances the yield of RPE cells. Using this technique we can derive large numbers of low passage RPE in as early as three months.


Assuntos
Técnicas Citológicas/métodos , Epitélio Pigmentado da Retina/citologia , Células-Tronco/citologia , Ativinas/farmacologia , Idoso , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Niacinamida/farmacologia , Células Fotorreceptoras/citologia , Células Fotorreceptoras/efeitos dos fármacos , Retina/citologia , Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
19.
EMBO Mol Med ; 6(5): 604-23, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24705878

RESUMO

Current therapeutic antiangiogenic biologics used for the treatment of pathological ocular angiogenesis could have serious side effects due to their interference with normal blood vessel physiology. Here, we report the generation of novel antivascular endothelial growth factor-A (VEGF) biologics, termed VEGF "Sticky-traps," with unique properties that allow for local inhibition of angiogenesis without detectable systemic side effects. Using genetic and pharmacological approaches, we demonstrated that Sticky-traps could locally inhibit angiogenesis to at least the same extent as the original VEGF-trap that also gains whole-body access. Sticky-traps did not cause systemic effects, as shown by uncompromised wound healing and normal tracheal vessel density. Moreover, if injected intravitreally, recombinant Sticky-trap remained localized to various regions of the eye, such as the inner-limiting membrane and ciliary body, for prolonged time periods, without gaining access either to the photoreceptors/choriocapillaris area or the circulation. These unique pharmacological characteristics of Sticky-trap could allow for safe treatment of pathological angiogenesis in patients with diabetic retinopathy and retinopathy of pre-maturity.


Assuntos
Produtos Biológicos/metabolismo , Olho/efeitos dos fármacos , Neovascularização Patológica/prevenção & controle , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Produtos Biológicos/efeitos adversos , Produtos Biológicos/farmacocinética , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular/farmacocinética , Proteínas Recombinantes de Fusão/efeitos adversos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Fator A de Crescimento do Endotélio Vascular/genética
20.
Adv Exp Med Biol ; 801: 275-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664708

RESUMO

Over a span of two decades, it has become increasingly clear that vascular endothelial growth factor (VEGF) plays an important role in the pathogenesis of retinal diseases including age-related macular degeneration (AMD) and diabetic retinopathy (DR). Based on these observations, anti-VEGF therapies are being developed and approved for clinical use in the treatment of neovascular eye diseases. Hypoxia-inducible factors (HIFs) are transcriptional factors that are stabilized and activated under hypoxic conditions and induce expression of gene products, including VEGF, that are required for cell survival under hypoxia. Here we discuss recent findings from our lab and others that define roles of the HIF-VEGF axis in the retina.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Degeneração Macular/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Humanos , Degeneração Macular/patologia , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA