Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cyst Fibros ; 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37813785

RESUMO

BACKGROUND: Alterations in gastrointestinal health are prominent manifestations of cystic fibrosis (CF) and can independently impact pulmonary function. Ivacaftor has been associated with robust improvements in pulmonary function and weight gain, but less is known about the impact of ivacaftor on the fecal microbiome, lipidome, and bile acids. METHODS: Stool samples from 18 patients with CF and gating mutations (ages 6-61 years, 13 pancreatic insufficient) were analyzed for fecal microbiome and lipidome composition as well as bile acid concentrations at baseline and after 3 months of treatment with ivacaftor. Microbiome composition was also assessed in a healthy reference cohort. RESULTS: Alpha and beta diversity of the microbiome were different between CF and reference cohort at baseline, but no treatment effect was seen in the CF cohort between baseline and 3 months. Seven lipids increased with treatment. No differences were seen in bile acid concentrations after treatment in CF. At baseline, 403 lipids and unconjugated bile acids were different between pancreatic insufficient (PI-CF) and sufficient (PS-CF) groups and 107 lipids were different between PI-CF and PS-CF after 3 months of treatment. CONCLUSIONS: The composition and diversity of the fecal microbiome were different in CF as compared to a healthy reference, and did not change after 3 months of ivacaftor. We detected modest differences in the fecal lipidome with treatment. Differences in lipid and bile acid profiles between PS-CF and PI-CF were attenuated after 3 months of treatment.

2.
Hepatology ; 78(6): 1843-1857, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222264

RESUMO

BACKGROUND AND AIMS: There is great interest in identifying microbiome features as reliable noninvasive diagnostic and/or prognostic biomarkers for non-cirrhotic NASH fibrosis. Several cross-sectional studies have reported gut microbiome features associated with advanced NASH fibrosis and cirrhosis, where the most prominent features are associated with cirrhosis. However, no large, prospectively collected data exist establishing microbiome features that discern non-cirrhotic NASH fibrosis, integrate the fecal metabolome as disease biomarkers, and are unconfounded by BMI and age. APPROACH AND RESULTS: Results from shotgun metagenomic sequencing performed on fecal samples prospectively collected from 279 US patients with biopsy-proven NASH (F1-F3 fibrosis) enrolled in the REGENERATE I303 study were compared to those from 3 healthy control cohorts and integrated with the absolute quantification of fecal bile acids. Microbiota beta-diversity was different, and BMI- and age-adjusted logistic regression identified 12 NASH-associated species. Random forest prediction models resulted in an AUC of 0.75-0.81 in a receiver operator characteristic analysis. In addition, specific fecal bile acids were significantly lower in NASH and correlated with plasma C4 levels. Microbial gene abundance analysis revealed 127 genes increased in controls, many involving protein synthesis, whereas 362 genes were increased in NASH many involving bacterial environmental responses (false discovery rate < 0.01). Finally, we provide evidence that fecal bile acid levels may be a better discriminator of non-cirrhotic NASH versus health than either plasma bile acids or gut microbiome features. CONCLUSIONS: These results may have value as a set of baseline characteristics of non-cirrhotic NASH against which therapeutic interventions to prevent cirrhosis can be compared and microbiome-based diagnostic biomarkers identified.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Estudos Transversais , Cirrose Hepática/complicações , Fibrose , Ácidos e Sais Biliares , Fezes/microbiologia , Biomarcadores
3.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G354-G368, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852920

RESUMO

Calorie restriction can enhance the regenerative capacity of the injured intestinal epithelium. Among other metabolic changes, calorie restriction can activate the autophagy pathway. Although independent studies have attributed the regenerative benefit of calorie restriction to downregulation of mTORC1, it is not known whether autophagy itself is required for the regenerative benefit of calorie restriction. We used mouse and organoid models with autophagy gene deletion to evaluate the contribution of autophagy to intestinal epithelial regeneration following calorie restriction. In the absence of injury, mice with intestinal epithelial-specific deletion of autophagy gene Atg7 (Atg7ΔIEC) exhibit weight loss and histological changes similar to wild-type mice following calorie restriction. Conversely, calorie-restricted Atg7ΔIEC mice displayed a significant reduction in regenerative crypt foci after irradiation compared with calorie-restricted wild-type mice. Targeted analyses of tissue metabolites in calorie-restricted mice revealed an association between calorie restriction and reduced glycocholic acid (GCA) in wild-type mice but not in Atg7ΔIEC mice. To evaluate whether GCA can directly modulate epithelial stem cell self-renewal, we performed enteroid formation assays with or without GCA. Wild-type enteroids exhibited reduced enteroid formation efficiency in response to GCA treatment, suggesting that reduced availability of GCA during calorie restriction may be one mechanism by which calorie restriction favors epithelial regeneration in a manner dependent upon epithelial autophagy. Taken together, our data support the premise that intestinal epithelial Atg7 is required for the regenerative benefit of calorie restriction, due in part to its role in modulating luminal GCA with direct effects on epithelial stem cell self-renewal.NEW & NOTEWORTHY Calorie restriction is associated with enhanced intestinal regeneration after irradiation, but the requirement of autophagy for this process is not known. Our data support the premise that intestinal epithelial autophagy is required for the regenerative benefit of calorie restriction. We also report that luminal levels of primary bile acid glycocholic acid are modulated by epithelial cell autophagy during calorie restriction with direct effects on epithelial stem cell function.


Assuntos
Restrição Calórica , Intestinos , Camundongos , Animais , Intestinos/fisiologia , Mucosa Intestinal/metabolismo , Células Epiteliais , Autofagia/genética
4.
Annu Rev Physiol ; 85: 449-468, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36375468

RESUMO

The interplay between diet, the gut microbiome, and host health is complex. Diets associated with health have many similarities: high fiber, unsaturated fatty acids, and polyphenols while being low in saturated fats, sodium, and refined carbohydrates. Over the past several decades, dietary patterns have changed significantly in Westernized nations with the increased consumption of calorically dense ultraprocessed foods low in fiber and high in saturated fats, salt, and refined carbohydrates, leading to numerous negative health consequences including obesity, metabolic syndrome, and cardiovascular disease. The gut microbiota is an environmental factor that interacts with diet and may also have an impact on health outcomes, many of which involve metabolites produced by the microbiota from dietary components that can impact the host. This review focuses on our current understanding of the complex relationship between diet, the gut microbiota, and host health, with examples of how diet can support health, increase an individual's risk for disease, and be used as a therapy for specific diseases.


Assuntos
Microbioma Gastrointestinal , Humanos , Dieta , Obesidade , Carboidratos
5.
Microbiome ; 10(1): 119, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922830

RESUMO

BACKGROUND: The cervicovaginal (CV) microbiome is highly associated with vaginal health and disease in both pregnant and nonpregnant individuals. An overabundance of Gardnerella vaginalis (G. vaginalis) in the CV space is commonly associated with adverse reproductive outcomes including bacterial vaginosis (BV), sexually transmitted diseases, and preterm birth, while the presence of Lactobacillus spp. is often associated with reproductive health. While host-microbial interactions are hypothesized to contribute to CV health and disease, the mechanisms by which these interactions regulate CV epithelial function remain largely unknown. RESULTS: Using an in vitro co-culture model, we assessed the effects of Lactobacillus crispatus (L. crispatus) and G. vaginalis on the CV epithelial barrier, the immune mediators that could be contributing to decreased barrier integrity and the immune signaling pathways regulating the immune response. G. vaginalis, but not L. crispatus, significantly increased epithelial cell death and decreased epithelial barrier integrity in an epithelial cell-specific manner. A G. vaginalis-mediated epithelial immune response including NF-κB activation and proinflammatory cytokine release was initiated partially through TLR2-dependent signaling pathways. Additionally, investigation of the cytokine immune profile in human CV fluid showed distinctive clustering of cytokines by Gardnerella spp. abundance and birth outcome. CONCLUSIONS: The results of this study show microbe-specific effects on CV epithelial function. Altered epithelial barrier function through cell death and immune-mediated mechanisms by G. vaginalis, but not L. crispatus, indicates that host epithelial cells respond to bacteria-associated signals, resulting in altered epithelial function and ultimately CV disease. Additionally, distinct immune signatures associated with Gardnerella spp. or birth outcome provide further evidence that host-microbial interactions may contribute significantly to the biological mechanisms regulating reproductive outcomes. Video Abstract.


Assuntos
Lactobacillus crispatus , Nascimento Prematuro , Vaginose Bacteriana , Citocinas , Células Epiteliais , Feminino , Gardnerella vaginalis , Humanos , Imunidade , Recém-Nascido , Gravidez , Vagina/microbiologia , Vaginose Bacteriana/microbiologia
6.
Crit Care Explor ; 3(3): e0360, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33786436

RESUMO

OBJECTIVES: The intestinal microbiome can modulate immune function through production of microbial-derived short-chain fatty acids. We explored whether intestinal dysbiosis in children with sepsis leads to changes in microbial-derived short-chain fatty acids in plasma and stool that are associated with immunometabolic dysfunction in peripheral blood mononuclear cells. DESIGN: Prospective observational pilot study. SETTING: Single academic PICU. PATIENTS: Forty-three children with sepsis/septic shock and 44 healthy controls. MEASUREMENTS AND MAIN RESULTS: Stool and plasma samples were serially collected for sepsis patients; stool was collected once for controls. The intestinal microbiome was assessed using 16S ribosomal RNA sequencing and alpha- and beta-diversity were determined. We measured short-chain fatty acids using liquid chromatography, peripheral blood mononuclear cell mitochondrial respiration using high-resolution respirometry, and immune function using ex vivo lipopolysaccharide-stimulated whole blood tumor necrosis factor-α. Sepsis patients exhibited reduced microbial diversity compared with healthy controls, with lower alpha- and beta-diversity. Reduced microbial diversity among sepsis patients (mainly from lower abundance of commensal obligate anaerobes) was associated with increased acetic and propionic acid and decreased butyric, isobutyric, and caproic acid. Decreased levels of plasma butyric acid were further associated with lower peripheral blood mononuclear cell mitochondrial respiration, which in turn, was associated with lower lipopolysaccharide-stimulated tumor necrosis factor-α. However, neither intestinal dysbiosis nor specific patterns of short-chain fatty acids were associated with lipopolysaccharide-stimulated tumor necrosis factor-α. CONCLUSIONS: Intestinal dysbiosis was associated with altered short-chain fatty acid metabolites in children with sepsis, but these findings were not linked directly to mitochondrial or immunologic changes. More detailed mechanistic studies are needed to test the role of microbial-derived short-chain fatty acids in the progression of sepsis.

7.
Microbiome ; 7(1): 126, 2019 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-31472697

RESUMO

BACKGROUND: The microbiome has been implicated in the initiation and persistence of inflammatory bowel disease. Despite the fact that diet is one of the most potent modulators of microbiome composition and function and that dietary intervention is the first-line therapy for treating pediatric Crohn's disease, the relationships between diet-induced remission, enteropathy, and microbiome are poorly understood. Here, we leverage a naturally-occurring canine model of chronic inflammatory enteropathy that exhibits robust remission following nutritional therapy, to perform a longitudinal study that integrates clinical monitoring, 16S rRNA gene amplicon sequencing, metagenomic sequencing, metabolomic profiling, and whole genome sequencing to investigate the relationship between therapeutic diet, microbiome, and disease. RESULTS: We show that remission induced by a hydrolyzed protein diet is accompanied by alterations in microbial community structure marked by decreased abundance of pathobionts (e.g., Escherichia coli and Clostridium perfringens), reduced severity of dysbiosis, and increased levels of the secondary bile acids, lithocholic and deoxycholic acid. Physiologic levels of these bile acids inhibited the growth of E. coli and C. perfringens isolates, in vitro. Metagenomic analysis and whole genome sequencing identified the bile acid producer Clostridium hiranonis as elevated after dietary therapy and a likely source of secondary bile acids during remission. When C. hiranonis was administered to mice, levels of deoxycholic acid were preserved and pathology associated with DSS colitis was ameliorated. Finally, a closely related bile acid producer, Clostridium scindens, was associated with diet-induced remission in human pediatric Crohn's disease. CONCLUSIONS: These data highlight that remission induced by a hydrolyzed protein diet is associated with improved microbiota structure, an expansion of bile acid-producing clostridia, and increased levels of secondary bile acids. Our observations from clinical studies of exclusive enteral nutrition in human Crohn's disease, along with our in vitro inhibition assays and in vivo studies in mice, suggest that this may be a conserved response to diet therapy with the potential to ameliorate disease. These findings provide insight into diet-induced remission of gastrointestinal disease and could help guide the rational design of more effective therapeutic diets.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença de Crohn/microbiologia , Dietoterapia/métodos , Disbiose , Microbioma Gastrointestinal , Animais , Criança , Clostridiales/metabolismo , Cães , Disbiose/microbiologia , Disbiose/terapia , Humanos , Estudos Longitudinais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Indução de Remissão
8.
Curr Gastroenterol Rep ; 21(1): 4, 2019 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-30684121

RESUMO

PURPOSE OF REVIEW: The goal of this paper is to review current literature on the gut microbiome within the context of host response to surgery and subsequent risk of developing complications, particularly anastomotic leak. We provide background on the relationship between host and gut microbiota with description of the role of the intestinal mucus layer as an important regulator of host health. RECENT FINDINGS: Despite improvements in surgical technique and adherence to the tenets of creating a tension-free anastomosis with adequate blood flow, the surgical community has been unable to decrease rates of anastomotic leak using the current paradigm. Rather than adhere to empirical strategies of decontamination, it is imperative to focus on the interaction between the human host and the gut microbiota that live within us. The gut microbiome has been found to play a potential role in development of post-operative complications, including but not limited to anastomotic leak. Evidence suggests that peri-operative interventions may have a role in instigating or mitigating the impact of the gut microbiota via disruption of the protective mucus layer, use of multiple medications, and activation of virulence factors. The microbiome plays a potential role in the development of surgical complications and can be modulated by peri-operative interventions. As such, further research into this relationship is urgently needed.


Assuntos
Anastomose Cirúrgica/efeitos adversos , Fístula Anastomótica/microbiologia , Microbioma Gastrointestinal/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Mucosa Intestinal/fisiopatologia , Fístula Anastomótica/etiologia , Humanos , Mucosa Intestinal/lesões , Mucosa Intestinal/microbiologia , Metaboloma/fisiologia
9.
Sci Transl Med ; 9(416)2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141885

RESUMO

Gut dysbiosis during inflammatory bowel disease involves alterations in the gut microbiota associated with inflammation of the host gut. We used a combination of shotgun metagenomic sequencing and metabolomics to analyze fecal samples from pediatric patients with Crohn's disease and found an association between disease severity, gut dysbiosis, and bacterial production of free amino acids. Nitrogen flux studies using 15N in mice showed that activity of bacterial urease, an enzyme that releases ammonia by hydrolysis of host urea, led to the transfer of murine host-derived nitrogen to the gut microbiota where it was used for amino acid synthesis. Inoculation of a conventional murine host (pretreated with antibiotics and polyethylene glycol) with commensal Escherichia coli engineered to express urease led to dysbiosis of the gut microbiota, resulting in a predominance of Proteobacteria species. This was associated with a worsening of immune-mediated colitis in these animals. A potential role for altered urease expression and nitrogen flux in the development of gut dysbiosis suggests that bacterial urease may be a potential therapeutic target for inflammatory bowel diseases.


Assuntos
Proteínas de Bactérias/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/microbiologia , Disbiose/metabolismo , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Urease/metabolismo , Animais , Humanos , Camundongos
10.
Cell Host Microbe ; 18(4): 489-500, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26468751

RESUMO

Abnormal composition of intestinal bacteria--"dysbiosis"-is characteristic of Crohn's disease. Disease treatments include dietary changes and immunosuppressive anti-TNFα antibodies as well as ancillary antibiotic therapy, but their effects on microbiota composition are undetermined. Using shotgun metagenomic sequencing, we analyzed fecal samples from a prospective cohort of pediatric Crohn's disease patients starting therapy with enteral nutrition or anti-TNFα antibodies and reveal the full complement and dynamics of bacteria, fungi, archaea, and viruses during treatment. Bacterial community membership was associated independently with intestinal inflammation, antibiotic use, and therapy. Antibiotic exposure was associated with increased dysbiosis, whereas dysbiosis decreased with reduced intestinal inflammation. Fungal proportions increased with disease and antibiotic use. Dietary therapy had independent and rapid effects on microbiota composition distinct from other stressor-induced changes and effectively reduced inflammation. These findings reveal that dysbiosis results from independent effects of inflammation, diet, and antibiotics and shed light on Crohn disease treatments.


Assuntos
Antibacterianos/administração & dosagem , Doença de Crohn/patologia , Doença de Crohn/terapia , Dieta/métodos , Disbiose/etiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/patologia , Antibacterianos/efeitos adversos , Archaea/classificação , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/isolamento & purificação , Dieta/efeitos adversos , Fungos/classificação , Fungos/isolamento & purificação , Humanos , Estudos Prospectivos , Vírus/classificação , Vírus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA