Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 42(3): 413-423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37156915

RESUMO

Genetic engineering of allogeneic cell therapeutics that fully prevents rejection by a recipient's immune system would abolish the requirement for immunosuppressive drugs or encapsulation and support large-scale manufacturing of off-the-shelf cell products. Previously, we generated mouse and human hypoimmune pluripotent (HIP) stem cells by depleting HLA class I and II molecules and overexpressing CD47 (B2M-/-CIITA-/-CD47+). To determine whether this strategy is successful in non-human primates, we engineered rhesus macaque HIP cells and transplanted them intramuscularly into four allogeneic rhesus macaques. The HIP cells survived unrestricted for 16 weeks in fully immunocompetent allogeneic recipients and differentiated into several lineages, whereas allogeneic wild-type cells were vigorously rejected. We also differentiated human HIP cells into endocrinologically active pancreatic islet cells and showed that they survived in immunocompetent, allogeneic diabetic humanized mice for 4 weeks and ameliorated diabetes. HIP-edited primary rhesus macaque islets survived for 40 weeks in an allogeneic rhesus macaque recipient without immunosuppression, whereas unedited islets were quickly rejected.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Transplante das Ilhotas Pancreáticas , Camundongos , Animais , Macaca mulatta , Antígeno CD47 , Rejeição de Enxerto
2.
Sci Transl Med ; 15(691): eadg5794, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043559

RESUMO

Transplantation of allogeneic pancreatic donor islets has successfully been performed in selected patients with difficult-to-control insulin-dependent diabetes and impaired awareness of hypoglycemia (IAH). However, the required systemic immunosuppression associated with this procedure prevents this cell replacement therapy from more widespread adoption in larger patient populations. We report the editing of primary human islet cells to the hypoimmune HLA class I- and class II-negative and CD47-overexpressing phenotype and their reaggregation into human HIP pseudoislets (p-islets). Human HIP p-islets were shown to survive, engraft, and ameliorate diabetes in immunocompetent, allogeneic, diabetic humanized mice. HIP p-islet cells were further shown to avoid autoimmune killing in autologous, diabetic humanized autoimmune mice. The survival and endocrine function of HIP p-islet cells were not impaired by contamination of unedited or partially edited cells within the p-islets. HIP p-islet cells were eliminated quickly and reliably in this model using a CD47-targeting antibody, thus providing a safety strategy in case HIP cells exert toxicity in a future clinical setting. Transplantation of human HIP p-islets for which no immunosuppression is required has the potential to lead to wider adoption of this therapy and help more diabetes patients with IAH and history of severe hypoglycemic events to achieve insulin independence.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante de Células-Tronco Hematopoéticas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Animais , Camundongos , Antígeno CD47 , Transplante das Ilhotas Pancreáticas/métodos , Autoimunidade , Diabetes Mellitus Tipo 1/terapia , Insulina
3.
FASEB J ; 28(7): 2790-803, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24671708

RESUMO

Controlled mechanical ventilation (CMV) is associated with the development of diaphragm atrophy and contractile dysfunction, and respiratory muscle weakness is thought to contribute significantly to delayed weaning of patients. Therefore, therapeutic strategies for preventing these processes may have clinical benefit. The aim of the current study was to investigate the role of the Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in CMV-mediated diaphragm wasting and weakness in rats. CMV-induced diaphragm atrophy and contractile dysfunction coincided with marked increases in STAT3 phosphorylation on both tyrosine 705 (Tyr705) and serine 727 (Ser727). STAT3 activation was accompanied by its translocation into mitochondria within diaphragm muscle and mitochondrial dysfunction. Inhibition of JAK signaling during CMV prevented phosphorylation of both target sites on STAT3, eliminated the accumulation of phosphorylated STAT3 within the mitochondria, and reversed the pathologic alterations in mitochondrial function, reduced oxidative stress in the diaphragm, and maintained normal diaphragm contractility. In addition, JAK inhibition during CMV blunted the activation of key proteolytic pathways in the diaphragm, as well as diaphragm atrophy. These findings implicate JAK/STAT3 signaling in the development of diaphragm muscle atrophy and dysfunction during CMV and suggest that the delayed extubation times associated with CMV can be prevented by inhibition of Janus kinase signaling.-Smith, I. J., Godinez, G. L., Singh, B. K., McCaughey, K. M., Alcantara, R. R., Gururaja, T., Ho, M. S., Nguyen, H. N., Friera, A. M., White, K. A., McLaughlin, J. R., Hansen, D., Romero, J. M., Baltgalvis, K. A., Claypool, M. D., Li, W., Lang, W., Yam, G. C., Gelman, M. S., Ding, R., Yung, S. L., Creger, D. P., Chen, Y., Singh, R., Smuder, A. J., Wiggs, M. P., Kwon, O.-S., Sollanek, K. J., Powers, S. K., Masuda, E. S., Taylor, V. C., Payan, D. G., Kinoshita, T., Kinsella, T. M. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction.


Assuntos
Diafragma/metabolismo , Janus Quinases/metabolismo , Respiração Artificial/efeitos adversos , Transdução de Sinais/fisiologia , Animais , Interleucina-6/metabolismo , Masculino , Mitocôndrias/metabolismo , Debilidade Muscular/metabolismo , Atrofia Muscular/metabolismo , Estresse Oxidativo/fisiologia , Fosforilação/fisiologia , Proteólise , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Serina/metabolismo , Tirosina/metabolismo
4.
Cancer Res ; 65(20): 9294-303, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16230391

RESUMO

A focus of contemporary cancer therapeutic development is the targeting of both the transformed cell and the supporting cellular microenvironment. Cell migration is a fundamental cellular behavior required for the complex interplay between multiple cell types necessary for tumor development. We therefore developed a novel retroviral-based screening technology in primary human endothelial cells to discover genes that control cell migration. We identified the receptor tyrosine kinase Axl as a novel regulator of endothelial cell haptotactic migration towards the matrix factor vitronectin. Using small interfering RNA-mediated silencing and overexpression of wild-type or mutated receptor proteins, we show that Axl is a key regulator of multiple angiogenic behaviors including endothelial cell migration, proliferation, and tube formation in vitro. Moreover, using sustained, retrovirally delivered short hairpin RNA (shRNA) Axl knockdown, we show that Axl is necessary for in vivo angiogenesis in a mouse model. Furthermore, we show that Axl is also required for human breast carcinoma cells to form a tumor in vivo. These findings indicate that Axl regulates processes vital for both neovascularization and tumorigenesis. Disruption of Axl signaling using a small-molecule inhibitor will hence simultaneously affect both the tumor and stromal cell compartments and thus represents a unique approach for cancer therapeutic development.


Assuntos
Neoplasias da Mama/enzimologia , Transformação Celular Neoplásica/metabolismo , Proteínas Oncogênicas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Animais , Neoplasias da Mama/irrigação sanguínea , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/genética , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Humanos , Camundongos , Camundongos SCID , Neovascularização Patológica/enzimologia , Neovascularização Patológica/genética , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/biossíntese , Proteínas Oncogênicas/genética , Proteínas Proto-Oncogênicas , RNA Interferente Pequeno/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/biossíntese , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Transfecção , Transplante Heterólogo , Vitronectina/farmacologia , Receptor Tirosina Quinase Axl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA