Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Adipocyte ; 10(1): 574-586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34714716

RESUMO

Expansion of visceral white adipose tissue (vWAT) occurs in response to nutrient excess, and is a risk factor for metabolic disease. SPRY1, a feedback inhibitor of receptor tyrosine kinase (RTK) signaling, is expressed in PDGFRa+ adipocyte progenitor cells (APC) in vivo. Global deficiency of Spry1 in mice results in disproportionate postnatal growth of gonadal WAT (gWAT), while iWAT and BAT were similar in size between Spry1KO and WT mice. Spry1 deficiency increased the number of PDGFRa+ stromal vascular fraction (SVF) cells in gWAT and showed increased proliferation and fibrosis. Spry1KO gWAT had increased collagen deposition and elevated expression of markers of inflammation. In vitro, SPRY1 was transiently down regulated during early adipocyte differentiation of SVF cells, with levels increasing at later stages of differentiation. SPRY1 deficiency enhances PDGF-AA and PDGF-BB induced proliferation of SVF cells. Increased proliferation of SVF from Spry1KO gWAT accompanies an increase in AKT activation. PDGF-AA stimulated a transient down regulation of SPRY1 in wild type SVF, whereas PDGF-BB stimulated a sustained down regulation of SPRY1 in wild type SVF. Collectively, our data suggest that SPRY1 is critical for regulating postnatal growth of gWAT by restraining APC proliferation and differentiation in part by regulation of PDGFRa/b-AKT signaling.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Tecido Adiposo , Tecido Adiposo Branco , Animais , Proteínas de Membrana/genética , Camundongos , Fosfoproteínas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fração Vascular Estromal
2.
Oncogene ; 40(2): 452-464, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177649

RESUMO

Interleukin-17 receptor D (IL-17RD), also known as similar expression to Fgf genes (SEF), is proposed to act as a signaling hub that negatively regulates mitogenic signaling pathways, like the ERK1/2 MAP kinase pathway, and innate immune signaling. The expression of IL-17RD is downregulated in certain solid tumors, which has led to the hypothesis that it may exert tumor suppressor functions. However, the role of IL-17RD in tumor biology remains to be studied in vivo. Here, we show that genetic disruption of Il17rd leads to the increased formation of spontaneous tumors in multiple tissues of aging mice. Loss of IL-17RD also promotes tumor development in a model of colitis-associated colorectal cancer, associated with an exacerbated inflammatory response. Colon tumors from IL-17RD-deficient mice are characterized by a strong enrichment in inflammation-related gene signatures, elevated expression of pro-inflammatory tumorigenic cytokines, such as IL-17A and IL-6, and increased STAT3 tyrosine phosphorylation. We further show that RNAi depletion of IL-17RD enhances Toll-like receptor and IL-17A signaling in colon adenocarcinoma cells. No change in the proliferation of normal or tumor intestinal epithelial cells was observed upon genetic inactivation of IL-17RD. Our findings establish IL-17RD as a tumor suppressor in mice and suggest that the protein exerts its function mainly by limiting the extent and duration of inflammation.


Assuntos
Carcinogênese/patologia , Colite/complicações , Neoplasias do Colo/patologia , Inflamação/complicações , Receptores de Interleucina/fisiologia , Animais , Carcinogênese/metabolismo , Proliferação de Células , Neoplasias do Colo/etiologia , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transcriptoma , Tirosina/metabolismo
3.
J Cell Biochem ; 120(8): 12450-12460, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30805994

RESUMO

Osteoclasts (OCs) are large, multinucleated bone resorbing cells originating from the bone marrow myeloid lineage, and share a common progenitor with macrophages and dendritic cells. Bone marrow cells (BMCs) are a common source for in vitro osteoclastogenesis assays but are a highly heterogeneous mixture of cells. Protocols for in vitro osteoclastogenesis vary considerably thus hindering interpretation and comparison of results between studies. Macrophage colony-stimulating factor (M-CSF) pretreatment is commonly used to expand OC progenitors (OCPs) in BMC cultures before in vitro differentiation. However, the failure of osteoclastogenesis of M-CSF primed bone marrow myeloid blasts has been reported. In this study, we used a simple method of differential adherence to plastic to enrich OCP from mouse BMCs. We found that M-CSF pretreatment of plastic-adherent BMCs (adBMCs) increased the number of CD11b-F4/80+ macrophages and decreased the number of CD11b+ monocytes resulting in decreased OC formation. M-CSF pretreatment of purified c-Kit+ progenitors weakly inhibited OC formation, whereas M-CSF pretreatment of purified c-Kit-CD11b+ progenitors promoted the formation of large OC. M-CSF pretreatment increased the proliferation of both purified c-Kit+ and c-Kit-CD11b+ cells and increased the percentage of CD11b-F4/80+ cells from c-Kit+ progenitors. In addition, M-CSF pretreatment increased the percentage of CD11b+ F4/80- cells from purified c-Kit-CD11b+ cells. M-CSF pretreatment increased the percentage of CD14 + CD16 + intermediate monocytes and subsequent OC formation from human 2adBMCs, and increased OC formation of purified CD14 + cells. Together, these results indicate that in vitro OCP expansion in the presence of M-CSF and bone marrow stromal cells is dependent upon the developmental stage of myeloid cells, in which M-CSF favors macrophage differentiation of multipotent progenitors, promotes monocyte maturation and supports differentiation of late-stage OCP cells.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Fator Estimulador de Colônias de Macrófagos/farmacologia , Células Mieloides/citologia , Osteoclastos/citologia , Osteogênese , Células-Tronco/citologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Feminino , Hematopoese , Fator Estimulador de Colônias de Macrófagos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
4.
J Cell Biochem ; 119(4): 3267-3279, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29105817

RESUMO

Signals from growth factors or mechanical stimuli converge to promote vascular smooth muscle cell (VSMC) migration and proliferation, key events in the pathogenesis of intimal hyperplasia upon vascular injury. Spry1, a regulator of receptor tyrosine kinases (RTK), plays a role in maintaining the contractile phenotype of VSMC. The aim of the current study was to determine the role of Spry1 in VSMC proliferation in vitro and injury induced neointimal hyperplasia in vivo. VSMC proliferation and neointima formation were evaluated in cultured human aortic SMC (hAoSMC) and ligation-induced injury of mouse carotid arteries from Spry1 gene targeted mice, and their corresponding wild type littermates. Human Spry1 or non-targeting control lentiviral shRNAs were used to knock down Spry1 in hAoSMC. Time course cell cycle analysis showed a reduced fraction of S-phase cells at 12 and 24 h after growth medium stimulation in Spry1 shRNA transduced hAoSMC. Consistent with reduced S-phase entry, the induction of cyclinD1 and the levels of pRbS807/S811, pH3Ser10, and pCdc2 were also reduced, while the cell cycle inhibitor p27Kip1 was maintained in Spry1 knockdown hAoSMC. In vivo, loss of Spry1 attenuated carotid artery ligation-induced neointima formation in mice, and this effect was accompanied by a decrease in cell proliferation similar to the in vitro results. Our findings demonstrate that loss of Spry1 attenuates mitogen-induced VSMC proliferation, and thus injury-induced neointimal hyperplasia likely via insufficient activation of Akt signaling causing decreased cyclinD1 and increased p27Kip1 and a subsequent decrease in Rb and cdc2 phosphorylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Lesões das Artérias Carótidas/complicações , Proteínas de Membrana/genética , Músculo Liso Vascular/citologia , Neointima/genética , Fosfoproteínas/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/metabolismo , Ciclo Celular , Proliferação de Células , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
5.
Cancer Cell Int ; 17: 53, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28507453

RESUMO

[This corrects the article DOI: 10.1186/s12935-016-0292-7.].

6.
Am J Pathol ; 186(6): 1649-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27216148

RESUMO

Evidence suggests that stromal cells play critical roles in tumor growth. Uncovering new mechanisms that control stromal cell behavior and their accumulation within tumors may lead to development of more effective treatments. We provide evidence that the HU177 cryptic collagen epitope is selectively generated within human ovarian carcinomas and this collagen epitope plays a role in SKOV-3 ovarian tumor growth in vivo. The ability of the HU177 epitope to regulate SKOV-3 tumor growth depends in part on its ability to modulate stromal cell behavior because targeting this epitope inhibited angiogenesis and, surprisingly, the accumulation of α-smooth muscle actin-expressing stromal cells. Integrin α10ß1 can serve as a receptor for the HU177 epitope in α-smooth muscle actin-expressing stromal cells and subsequently regulates Erk-dependent migration. These findings are consistent with a mechanism by which the generation of the HU177 collagen epitope provides a previously unrecognized α10ß1 ligand that selectively governs angiogenesis and the accumulation of stromal cells, which in turn secrete protumorigenic factors that contribute to ovarian tumor growth. Our findings provide a new mechanistic understanding into the roles by which the HU177 epitope regulates ovarian tumor growth and provide new insight into the clinical results from a phase 1 human clinical study of the monoclonal antibody D93/TRC093 in patients with advanced malignant tumors.


Assuntos
Proliferação de Células , Colágeno/metabolismo , Epitopos , Neoplasias Ovarianas/patologia , Microambiente Tumoral/fisiologia , Animais , Western Blotting , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Colágeno/química , Feminino , Xenoenxertos , Humanos , Camundongos , Neovascularização Patológica/metabolismo , Neoplasias Ovarianas/metabolismo
7.
Cancer Cell Int ; 16: 19, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973433

RESUMO

BACKGROUND: Cancer stem cells contribute to tumor initiation, heterogeneity, and recurrence, and are critical targets in cancer therapy. Sprouty4 (Spry4) is a potent inhibitor of signal transduction pathways elicited by receptor tyrosine kinases, and has roles in regulating cell proliferation, migration and differentiation. Spry4 has been implicated as a tumor suppressor and in modulating embryonic stem cells. OBJECTIVES: The purpose of this research was to test the novel idea that Spry4 regulates cancer stem cell properties in breast cancer. METHODS: Loss-of function of Spry4 in human MDA-MB-231 cell was used to test our hypothesis. Spry4 knockdown or control cell lines were generated using lentiviral delivery of human Spry4 or non-targeting control shRNAs, and then selected with 2 µg/ml puromycin. Cell growth and migratory abilities were determined using growth curve and cell cycle flow cytometry analyses and scratch assays, respectively. Xenograft tumor model was used to determine the tumorigenic activity and metastasis in vivo. Cancer stem cell related markers were evaluated using immunoblotting assays and fluorescence-activated cell sorting. Cancer stem cell phenotype was evaluated using in vitro mammosphere formation and drug sensitivity tests, and in vivo limiting dilution tumor formation assay. RESULTS: Two out of three tested human Spry4 shRNAs significantly suppressed the expression of endogenous Spry4 in MDA-MB-231 cells. Suppressing Spry4 expression increased MDA-MB-231 cell proliferation and migration. Suppressing Spry4 increased ß3-integrin expression, and CD133(+)CD44(+) subpopulation. Suppressing Spry4 increased mammosphere formation, while decreasing the sensitivity of MDA-MB-231 cells to Paclitaxel treatment. Finally, suppressing Spry4 increased the potency of MDA-MB-231 cell tumor initiation, a feature attributed to cancer stem cells. CONCLUSIONS: Our findings provide novel evidence that endogenous Spry4 may have tumor suppressive activity in breast cancer by suppressing cancer stem cell properties in addition to negative effects on tumor cell proliferation and migration.

8.
J Cell Biochem ; 117(10): 2346-56, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26950413

RESUMO

Sef (similar expression to fgf), also know as IL17RD, is a transmembrane protein shown to inhibit fibroblast growth factor signaling in developmental and cancer contexts; however, its role as a tumor suppressor remains to be fully elucidated. Here, we show that Sef regulates epithelial-mesenchymal transition (EMT) in breast cancer cell lines. Sef expression was highest in the normal breast epithelial cell line MCF10A, intermediate expression in MCF-7 cells and lowest in MDA-MB-231 cells. Knockdown of Sef increased the expression of genes associated with EMT, and promoted cell migration, invasion, and a fibroblastic morphology of MCF-7 cells. Overexpression of Sef inhibited the expression of EMT marker genes and inhibited cell migration and invasion in MCF-7 cells. Induction of EMT in MCF10A cells by TGF-ß and TNF-α resulted in downregulation of Sef expression concomitant with upregulation of EMT gene expression and loss of epithelial morphology. Overexpression of Sef in MCF10A cells partially blocked cytokine-induced EMT. Sef was shown to block ß-catenin mediated luciferase reporter activity and to cause a decrease in the nuclear localization of active ß-catenin. Furthermore, Sef was shown to co-immunoprecipitate with ß-catenin. In a mouse orthotopic xenograft model, Sef overexpression in MDA-MB-231 cells slowed tumor growth and reduced expression of EMT marker genes. Together, these data indicate that Sef plays a role in the negative regulation of EMT in a ß-catenin dependent manner and that reduced expression of Sef in breast tumor cells may be permissive for EMT and the acquisition of a more metastatic phenotype. J. Cell. Biochem. 117: 2346-2356, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Receptores de Interleucina/metabolismo , Animais , Apoptose , Western Blotting , Neoplasias da Mama/metabolismo , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas
9.
J Biol Chem ; 291(6): 2731-50, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26668310

RESUMO

Extracellular matrix (ECM) remodeling regulates angiogenesis. However, the precise mechanisms by which structural changes in ECM proteins contribute to angiogenesis are not fully understood. Integrins are molecules with the ability to detect compositional and structural changes within the ECM and integrate this information into a network of signaling circuits that coordinate context-dependent cell behavior. The role of integrin αvß3 in angiogenesis is complex, as evidence exists for both positive and negative functions. The precise downstream signaling events initiated by αvß3 may depend on the molecular characteristics of its ligands. Here, we identified an RGD-containing cryptic collagen epitope that is generated in vivo. Surprisingly, rather than inhibiting αvß3 signaling, this collagen epitope promoted αvß3 activation and stimulated angiogenesis and inflammation. An antibody directed to this RGDKGE epitope but not other RGD collagen epitopes inhibited angiogenesis and inflammation in vivo. The selective ability of this RGD epitope to promote angiogenesis and inflammation depends in part on its flanking KGE motif. Interestingly, a subset of macrophages may represent a physiologically relevant source of this collagen epitope. Here, we define an endothelial cell mechano-signaling pathway in which a cryptic collagen epitope activates αvß3 leading to an Src and p38 MAPK-dependent cascade that leads to nuclear accumulation of Yes-associated protein (YAP) and stimulation of endothelial cell growth. Collectively, our findings not only provide evidence for a novel mechano-signaling pathway, but also define a possible therapeutic strategy to control αvß3 signaling by targeting a pro-angiogenic and inflammatory ligand of αvß3 rather than the receptor itself.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colágeno/farmacologia , Células Endoteliais/metabolismo , Epitopos/farmacologia , Mecanotransdução Celular/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Colágeno/química , Células Endoteliais/citologia , Epitopos/química , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Mecanotransdução Celular/genética , Camundongos , Fosfoproteínas/genética , Fatores de Transcrição , Proteínas de Sinalização YAP , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src
10.
Angiogenesis ; 18(1): 31-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25249331

RESUMO

A more complete understanding of the mechanisms that regulate the angiogenic switch, which contributes to the conversion of small dormant tumors to actively growing malignancies, is important for the development of more effective anti-angiogenic strategies for cancer therapy. While significant progress has been made in understanding the complex mechanisms by which integrin αvß3 expressed in endothelial cells governs angiogenesis, less is known concerning the ability of αvß3 expressed within the tumor cell compartment to modulate the angiogenic output of a tumor. Here we provide evidence that αvß3 expressed in melanoma cells may contribute to the suppression of IGFBP-4, an important negative regulator of IGF-1 signaling. Given the multiple context-dependent roles for αvß3 in angiogenesis and tumor progression, our novel findings provide additional molecular insight into how αvß3 may govern the angiogenic switch by a mechanism associated with a p38 MAPK and matrix metalloproteinases-dependent regulation of the endogenous angiogenesis inhibitor IGFBP-4.


Assuntos
Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Melanoma/fisiopatologia , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Primers do DNA/genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Melanoma/complicações , Neovascularização Patológica/etiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microtomografia por Raio-X
11.
J Bone Miner Res ; 29(5): 1217-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24127237

RESUMO

Sef (similar expression to fgf genes) is a feedback inhibitor of fibroblast growth factor (FGF) signaling and functions in part by binding to FGF receptors and inhibiting their activation. Genetic studies in mice and humans indicate an important role for fibroblast growth factor signaling in bone growth and homeostasis. We, therefore, investigated whether Sef had a function role in skeletal acquisition and remodeling. Sef expression is increased during osteoblast differentiation in vitro, and LacZ staining of Sef+/- mice showed high expression of Sef in the periosteum and chondro-osseous junction of neonatal and adult mice. Mice with a global deletion of Sef showed increased cortical bone thickness, bone volume, and increased periosteal perimeter by micro-computed tomography (micro-CT). Histomorphometric analysis of cortical bone revealed a significant increase in osteoblast number. Interestingly, Sef-/- mice showed very little difference in trabecular bone by micro-CT and histomorphometry compared with wild-type mice. Bone marrow cells from Sef-/- mice grown in osteogenic medium showed increased proliferation and increased osteoblast differentiation compared with wild-type bone marrow cells. Bone marrow cells from Sef-/- mice showed enhanced FGF2-induced activation of the ERK pathway, whereas bone marrow cells from Sef transgenic mice showed decreased FGF2-induced signaling. FGF2-induced acetylation and stability of Runx2 was enhanced in Sef-/- bone marrow cells, whereas overexpression of Sef inhibited Runx2-responsive luciferase reporter activity. Bone marrow from Sef-/- mice showed enhanced hematopoietic lineage-dependent and osteoblast-dependent osteoclastogenesis and increased bone resorptive activity relative to wild-type controls in in vitro assays, whereas overexpression of Sef inhibited osteoclast differentiation. Taken together, these studies indicate that Sef has specific roles in osteoblast and osteoclast lineages and that its absence results in increased osteoblast and osteoclast activity with a net increase in cortical bone mass.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Proteínas de Membrana/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Periósteo/metabolismo , Animais , Medula Óssea/metabolismo , Medula Óssea/patologia , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Tamanho do Órgão , Osteoblastos/patologia , Osteoclastos/patologia , Periósteo/patologia
12.
J Cell Biochem ; 115(5): 874-88, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24375433

RESUMO

FGF applied as a single growth factor to quiescent mouse fibroblasts induces a round of DNA replication, however continuous stimulation results in arrest in the G1 phase of the next cell cycle. We hypothesized that FGF stimulation induces the establishment of cell memory, which prevents the proliferative response to repeated or continuous FGF application. When a 2-5 days quiescence period was introduced between primary and repeated FGF treatments, fibroblasts failed to efficiently replicate in response to secondary FGF application. The establishment of "FGF memory" during the first FGF stimulation did not require DNA synthesis, but was dependent on the activity of FGF receptors, MEK, p38 MAPK and NFκB signaling, and protein synthesis. While secondary stimulation resulted in strongly decreased replication rate, we did not observe any attenuation of morphological changes, Erk1/2 phosphorylation and cyclin D1 induction. However, secondary FGF stimulation failed to induce the expression of cyclin A, which is critical for the progression from G1 to S phase. Treatment of cells with a broad range histone deacetylase inhibitor during the primary FGF stimulation rescued the proliferative response to the secondary FGF treatment suggesting that the establishment of "FGF memory" may be based on epigenetic changes. We suggest that "FGF memory" can prevent the hyperplastic response to cell damage and inflammation, which are associated with an enhanced FGF production and secretion. "FGF memory" may present a natural obstacle to the efficient application of recombinant FGFs for the treatment of ulcers, ischemias, and wounds.


Assuntos
Ciclo Celular/genética , Movimento Celular/genética , Proliferação de Células , Fatores de Crescimento de Fibroblastos/metabolismo , Animais , Ciclina D1/genética , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/genética , Fatores de Crescimento de Fibroblastos/administração & dosagem , Fase G1/genética , Histona Desacetilases/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Angiogenesis ; 16(4): 861-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955631

RESUMO

Angiogenesis is mediated by signaling through receptor tyrosine kinases (RTKs), Src family kinases and adhesion receptors such as integrins, yet the mechanism how these signaling pathways regulate one another remains incompletely understood. The RTK modulator, Sprouty4 (Spry4) inhibits endothelial cell functions and angiogenesis, but the mechanisms remain to be fully elucidated. In this study, we demonstrate that Spry4 regulates angiogenesis in part by regulating endothelial cell migration. Overexpression of Spry4 in human endothelial cells inhibited migration and adhesion on vitronectin (VTN), whereas knockdown of Spry4 enhanced these behaviors. These activities were shown to be c-Src-dependent and Ras-independent. Spry4 disrupted the crosstalk between vascular endothelial growth factor-2 and integrin αVß3, the receptor for VTN. Spry4 overexpression resulted in decreased integrin ß3 protein levels in a post-transcriptional manner in part by modulating its tyrosine phosphorylation by c-Src. Conversely, knockdown of Spry4 resulted in increased integrin ß3 protein levels and tyrosine phosphorylation. Moreover, in vivo analysis revealed that Spry4 regulated integrin ß3 levels in murine embryos and yolk sacs. Our findings identify an unanticipated role for Spry4 in regulating c-Src activity and integrin ß3 protein levels, which contributes to the regulation of migration and adhesion of endothelial cells. Thus, targeting Spry4 may be exploited as a target in anti-angiogenesis therapies.


Assuntos
Células Endoteliais/citologia , Integrina beta3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Neovascularização Fisiológica/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Quinases da Família src/metabolismo , Animais , Aorta/citologia , Proteína Tirosina Quinase CSK , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Embrião de Mamíferos/citologia , Células Endoteliais/metabolismo , Ativação Enzimática , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Integrina alfaVbeta3/fisiologia , Integrina beta3/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fosforilação , Fosfotirosina/metabolismo , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vasos Retinianos/crescimento & desenvolvimento , Regulação para Cima , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Vitronectina/metabolismo , Saco Vitelino/citologia
14.
PLoS One ; 8(3): e58746, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554919

RESUMO

BACKGROUND: Changes in the vascular smooth muscle cell (VSMC) contractile phenotype occur in pathological states such as restenosis and atherosclerosis. Multiple cytokines, signaling through receptor tyrosine kinases (RTK) and PI3K/Akt and MAPK/ERK pathways, regulate these phenotypic transitions. The Spry proteins are feedback modulators of RTK signaling, but their specific roles in VSMC have not been established. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report for the first time that Spry1, but not Spry4, is required for maintaining the differentiated state of human VSMC in vitro. While Spry1 is a known MAPK/ERK inhibitor in many cell types, we found that Spry1 has little effect on MAPK/ERK signaling but increases and maintains Akt activation in VSMC. Sustained Akt signaling is required for VSMC marker expression in vitro, while ERK signaling negatively modulates Akt activation and VSMC marker gene expression. Spry4, which antagonizes both MAPK/ERK and Akt signaling, suppresses VSMC differentiation marker gene expression. We show using siRNA knockdown and ChIP assays that FoxO3a, a downstream target of PI3K/Akt signaling, represses myocardin promoter activity, and that Spry1 increases, while Spry4 decreases myocardin mRNA levels. CONCLUSIONS: Together, these data indicate that Spry1 and Spry4 have opposing roles in VSMC phenotypic modulation, and Spry1 maintains the VSMC differentiation phenotype in vitro in part through an Akt/FoxO/myocardin pathway.


Assuntos
Aorta/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transativadores/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Miócitos de Músculo Liso/citologia , Proteínas do Tecido Nervoso/genética , Fenótipo , Fosfoproteínas/genética , Transdução de Sinais , Transcrição Gênica
15.
J Biol Chem ; 287(3): 1779-89, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22134921

RESUMO

An in-depth understanding of the molecular and cellular complexity of angiogenesis continues to advance as new stimulators and inhibitors of blood vessel formation are uncovered. Gaining a more complete understanding of the response of blood vessels to both stimulatory and inhibitory molecules will likely contribute to more effective strategies to control pathological angiogenesis. Here, we provide evidence that endothelial cell interactions with structurally altered collagen type IV may suppress the expression of insulin-like growth factor binding protein-4 (IGFBP-4), a well documented inhibitor of the IGF-1/IGF-1R signaling axis. We report for the first time that IGFBP-4 differentially inhibits angiogenesis induced by distinct growth factor signaling pathways as IGFBP-4 inhibited FGF-2- and IGF-1-stimulated angiogenesis but failed to inhibit VEGF-induced angiogenesis. The resistance of VEGF-stimulated angiogenesis to IGFBP-4 inhibition appears to depend on sustained activation of p38 MAPK as blocking its activity restored the anti-angiogenic effects of IGFBP-4 on VEGF-induced blood vessel growth in vivo. These novel findings provide new insight into how blood vessels respond to endogenous inhibitors during angiogenesis stimulated by distinct growth factor signaling pathways.


Assuntos
Inibidores da Angiogênese/metabolismo , Células Endoteliais/metabolismo , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/genética , Animais , Embrião de Galinha , Células Endoteliais/citologia , Humanos , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Int J Biochem Cell Biol ; 43(10): 1523-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21801849

RESUMO

Setleis Syndrome (OMIM ID: 227260) is a rare autosomal recessive disease characterized by abnormal facial development. Recently, we have reported that two nonsense mutations (c.486C>T [Q119X] and c.324C>T [Q65X]) of the basic helix-loop-helix (bHLH) transcription factor TWIST2 cause Setleis Syndrome. Here we show that periostin, a cell adhesion protein involved in connective tissue development and maintenance, is down-regulated in Setleis Syndrome patient fibroblast cells and that periostin positively responds to manipulations in TWIST2 levels, suggesting that TWIST2 is a transactivator of periostin. Functional analysis of the TWIST2 mutant form (Q119X) revealed that it maintains the ability to localize to the nucleus, forms homo and heterodimers with the ubiquitous bHLH protein E12, and binds to dsDNA. Reporter gene assays using deletion constructs of the human periostin promoter also reveal that TWIST2 can activate this gene more specifically than Twist1, while the Q119X mutant results in no significant transactivation. Chromatin immunoprecipitation assays show that both wild-type TWIST2 and the Q119X mutant bind the periostin promoter, however only wild-type TWIST2 is associated with higher levels of histone acetylation across the 5'-regulatory region of periostin. Taken together, these data suggest that the C-terminal domain of TWIST2, which is missing in the Q119X mutant form of TWIST2, is responsible for proper transactivation of the periostin gene. Improper regulation of periostin by the mutant form of TWIST2 could help explain some of the soft tissue abnormalities seen in these patients therefore providing a genotype-phenotype relationship for Setleis Syndrome.


Assuntos
Moléculas de Adesão Celular/genética , Hipoplasia Dérmica Focal/genética , Sequências Hélice-Alça-Hélice , Proteínas Repressoras/metabolismo , Dermatopatias/genética , Ativação Transcricional , Proteína 1 Relacionada a Twist/metabolismo , Células Cultivadas , Códon sem Sentido/genética , Displasia Ectodérmica , Fibroblastos/metabolismo , Hipoplasia Dérmica Focal/metabolismo , Displasias Dérmicas Faciais Focais , Humanos , Multimerização Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Dermatopatias/metabolismo , Proteína 1 Relacionada a Twist/química , Proteína 1 Relacionada a Twist/genética
17.
PLoS One ; 6(4): e18374, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21483770

RESUMO

BACKGROUND: Development of the hematopoietic and endothelial lineages derives from a common mesodermal precursor, the Flk1(+) hemangioblast. However, the signaling pathways that regulate the development of hematopoietic and endothelial cells from this common progenitor cell remains incompletely understood. Using mouse models with a conditional Spry1 transgene, and a Spry1 knockout mouse, we investigated the role of Spry1 in the development of the endothelial and hematopoietic lineages during development. METHODOLOGY/PRINCIPAL FINDINGS: Quantitative RT-PCR analysis demonstrates that Spry1, Spry2, and Spry4 are expressed in Flk1(+) hemangioblasts in vivo, and decline significantly in c-Kit(+) and CD41(+) hematopoietic progenitors, while expression is maintained in developing endothelial cells. Tie2-Cre-mediated over-expression of Spry1 results in embryonic lethality. At E9.5 Spry1;Tie2-Cre embryos show near normal endothelial cell development and vessel patterning but have reduced hematopoiesis. FACS analysis shows a reduction of primitive hematopoietic progenitors and erythroblastic cells in Spry1;Tie2-Cre embryos compared to controls. Colony forming assays confirm the hematopoietic defects in Spry1;Tie2-Cre transgenic embryos. Immunostaining shows a significant reduction of CD41 or CD71 and dpERK co-stained cells in Spry1;Tie2-Cre embryos compared to controls, whereas the number of VEC(+) and dpERK co-stained cells is comparable. Compared to controls, Spry1;Tie2-Cre embryos also show a decrease in proliferation and an increase in apoptosis. Furthermore, loss of Spry1 results in an increase of CD41(+) and CD71(+) cells at E9.5 compared with controls. CONCLUSIONS/SIGNIFICANCE: These data indicate that primitive hematopoietic cells derive from Tie2-expressing hemangioblasts and that Spry1 over expression inhibits primitive hematopoietic progenitor and erythroblastic cell development and expansion while having no obvious effect on endothelial cell development.


Assuntos
Regulação da Expressão Gênica , Hemangioblastos/citologia , Hemangioblastos/metabolismo , Hematopoese/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos CD/metabolismo , Apoptose/genética , Antígenos de Grupos Sanguíneos/metabolismo , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Eritroblastos/citologia , Eritroblastos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Transgênicos , Fosfoproteínas/deficiência , Fosforilação/genética , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2 , Receptores da Transferrina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
18.
J Cell Physiol ; 226(11): 3064-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21302306

RESUMO

FGF1, a widely expressed proangiogenic factor involved in tissue repair and carcinogenesis, is released from cells through a non-classical pathway independent of endoplasmic reticulum and Golgi. Although several proteins participating in FGF1 export were identified, genetic mechanisms regulating this process remained obscure. We found that FGF1 export and expression are regulated through Notch signaling mediated by transcription factor CBF1 and its partner MAML. The expression of a dominant negative (dn) form of CBF1 in 3T3 cells induces transcription of FGF1 and sphingosine kinase 1 (SphK1), which is a component of FGF1 export pathway. dnCBF1 expression stimulates the stress-independent release of transduced FGF1 from NIH 3T3 cells and endogenous FGF1 from A375 melanoma cells. NIH 3T3 cells transfected with dnCBF1 form colonies in soft agar and produce rapidly growing highly angiogenic tumors in nude mice. The transformed phenotype of dnCBF1 transfected cells is efficiently blocked by dn forms of FGF receptor 1 and S100A13, which is a component of FGF1 export pathway. FGF1 export and acceleration of cell growth induced by dnCBF1 depend on SphK1. Similar to dnCBF1, dnMAML transfection induces FGF1 expression and release, and accelerates cell proliferation. The latter effect is strongly decreased in FGF1 null cells. We suggest that the regulation of FGF1 expression and release by CBF1-mediated Notch signaling can play an important role in tumor formation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Receptores Notch/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Humanos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos , Camundongos Nus , Células NIH 3T3 , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Proteínas Nucleares/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas S100/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transfecção
19.
Neural Dev ; 5: 31, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21122105

RESUMO

We previously identified four functionally distinct human NUMB isoforms. Here, we report the identification of two additional isoforms and propose a link between the expression of these isoforms and cancer. These novel isoforms, NUMB5 and NUMB6, lack exon 10 and are expressed in cells known for polarity and migratory behavior, such as human amniotic fluid cells, glioblastoma and metastatic tumor cells. RT-PCR and luciferase assays demonstrate that NUMB5 and NUMB6 are less antagonistic to NOTCH signaling than other NUMB isoforms. Immunocytochemistry analyses show that NUMB5 and NUMB6 interact and complex with CDC42, vimentin and the CDC42 regulator IQGAP1 (IQ (motif) GTPase activating protein 1). Furthermore, the ectopic expression of NUMB5 and NUMB6 induces the formation of lamellipodia (NUMB5) and filopodia (NUMB6) in a CDC42- and RAC1-dependent manner. These results are complemented by in vitro and in vivo studies, demonstrating that NUMB5 and NUMB6 alter the migratory behavior of cells. Together, these novel isoforms may play a role in further understanding the NUMB function in development and cancer.


Assuntos
Desenvolvimento Fetal/fisiologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/fisiologia , Animais , Western Blotting , Movimento Celular/genética , Polaridade Celular/genética , Embrião de Galinha , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais , Neurogênese/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Genesis ; 48(9): 563-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20645309

RESUMO

The regulatory elements of the Tie2/Tek promoter are commonly used in mouse models to direct transgene expression to endothelial cells. Tunica intima endothelial kinase 2 (Tie2) is also expressed in hematopoietic cells, although this has not been fully characterized. We determine the lineages of adult hematopoietic cells derived from Tie2-expressing populations using Tie2-Cre;Rosa26R-EYFP mice. In Tie2-Cre;Rosa26R-EYFP mice, analysis of bone marrow cells showed Cre-mediated recombination in 85% of the population. In adult bone marrow and spleen, we analyzed subclasses of early hematopoietic progenitors, T cells, monocytes, granulocytes, and B cells. We found that ∼ 84% of each lineage was EYFP(+), and nearly all cells that come from Tie2-expressing lineages are CD45(+), confirming widespread contribution to definitive hematopoietic cells. In addition, more than 82% of blood cells within the embryonic yolk sac were of Tie2(+) origin. Our findings of high levels of Tie2-Cre recombination in the hematopoietic lineage have implications for the use of the Tie2-Cre mouse as a lineage-restricted driver strain.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Recombinação Genética/genética , Animais , Proteínas de Bactérias/metabolismo , Células da Medula Óssea/metabolismo , Primers do DNA/genética , Citometria de Fluxo , Integrases/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Receptor TIE-2 , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA