Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 196: 106754, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554983

RESUMO

The present study proposed modification of 5-FU by conjugation with an acyl chloride and a 5-membered heterocyclic ring to improve its in-vitro cytotoxicity and metabolic stability. XYZ-I-71 and XYZ-I-73 were synthesized by introducing a tetrahydrofuran ring on 5-fluorocytosine (a precursor of 5-FU) and conjugation with octanoyl chloride and lauroyl chloride, respectively. The structure of the synthesized compounds was validated using NMR and micro-elemental analysis. The antiproliferative activity of the analogs was determined against MiaPaCa-2, PANC-1, and BxPC-3 pancreatic cancer cells. The analog's stability in human liver microsomes was quantified by HPLC. We found that the XYZ-I-73 (IC50 3.6 ± 0.4 µM) analog was most effective against MiaPaCa-2 cells compared to XYZ-I-71(IC50 12.3 ± 1.7 µM), GemHCl (IC50 24.2 ± 1.3 µM), Irinotecan (IC50 10.1 ± 1.5 µM) and 5-FU (IC50 13.2 ± 1.1 µM). The antiproliferative effects of this analog in Miapaca-2 cells is evident based on it having a 7-fold,3-fold, and 4-fold increased cytotoxic effect over Gem-HCl, Irinotecan, and 5-FU, respectively. On the other hand, XYZ-I-71 exhibited a 2-fold increased cytotoxic effect over Gem-HCl but a comparable cytotoxic effect to 5-FU and Irinotecan in MiaPaCa-2 cells. A similar trend of higher XYZ-I-73 inhibition was observed in PANC-1 and BxPC-3 cultures. For 48-h MiaPaCa-2 cell migration studies, XYZ-I-73 (5 µM) significantly reduced migration (# of migrated cells, 168 ± 2.9), followed by XYZ-I-71(315±2.1), Gem-HCl (762±3.1) and 5-FU (710 ± 3.2). PARP absorbance studies demonstrated significant inhibition of PARP expression of XYZ-I-73 treated cells compared to 5-FU, GemHCl, and XYZ-I-71. Further, BAX and p53 expressions were significantly increased in cells treated with XYZ-I-73 compared to 5-FU, GemHCl, and XYZ-I-71. In-vitro, metabolic stability studies showed that 80 ± 5.9% of XYZ-I-71 and XYZ-I-73 remained intact after 2 h exposure in liver microsomal solution compared to 5-FU. The XYZ-I-73 analog demonstrated a remarkable cytotoxic effect and improved in-vitro metabolic stability over the selected standard drugs and may have potential anticancer activity against pancreatic cancer.

2.
BMC Cancer ; 23(1): 435, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179357

RESUMO

Gemcitabine (Gem) has been a standard first-line drug for pancreatic cancer (PCa) treatment; however, Gem's rapid metabolism and systemic instability (short half-life) limit its clinical outcome. The objective of this study was to modify Gem into a more stable form called 4-(N)-stearoyl-gemcitabine (4NSG) and evaluate its therapeutic efficacy in patient-derived xenograft (PDX) models from PCa of Black and White patients.Methods 4NSG was synthesized and characterized using nuclear magnetic resonance (NMR), elemental analysis, and high-performance liquid chromatography (HPLC). 4NSG-loaded solid lipid nanoparticles (4NSG-SLN) were developed using the cold homogenization technique and characterized. Patient-derived pancreatic cancer cell lines labeled Black (PPCL-192, PPCL-135) and White (PPCL-46, PPCL-68) were used to assess the in vitro anticancer activity of 4NSG-SLN. Pharmacokinetics (PK) and tumor efficacy studies were conducted using PDX mouse models bearing tumors from Black and White PCa patients.Results 4NSG was significantly stable in liver microsomal solution. The effective mean particle size (hydrodynamic diameter) of 4NSG-SLN was 82 ± 6.7 nm, and the half maximal inhibitory concentration (IC50) values of 4NSG-SLN treated PPCL-192 cells (9 ± 1.1 µM); PPCL-135 (11 ± 1.3 µM); PPCL-46 (12 ± 2.1) and PPCL-68 equaled to 22 ± 2.6 were found to be significantly lower compared to Gem treated PPCL-192 (57 ± 1.5 µM); PPCL-135 (56 ± 1.5 µM); PPCL-46 (56 ± 1.8 µM) and PPCL-68 (57 ± 2.4 µM) cells. The area under the curve (AUC), half-life, and pharmacokinetic clearance parameters for 4NSG-SLN were 3-fourfold higher than that of GemHCl. For in-vivo studies, 4NSG-SLN exhibited a two-fold decrease in tumor growth compared with GemHCl in PDX mice bearing Black and White PCa tumors.Conclusion 4NSG-SLN significantly improved the Gem's pharmacokinetic profile, enhanced Gem's systemic stability increased its antitumor efficacy in PCa PDX mice bearing Black and White patient tumors.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Xenoenxertos , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Modelos Animais de Doenças , Nanopartículas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
3.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901721

RESUMO

Pancreatic cancer is projected to be the second leading cause of cancer-related death by 2030 in the US. The benefits of the most common systemic therapy for various pancreatic cancers have been masked by high drug toxicities, adverse reactions, and resistance. The use of nanocarriers such as liposomes to overcome these unwanted effects has become very popular. This study aims to formulate 1,3-bistertrahydrofuran-2yl-5FU (MFU)-loaded liposomal nanoparticles (Zhubech) and to evaluate itsstability, release kinetics, in vitro and in vivo anticancer activities, and biodistribution in different tissues. Particle size and zeta potential were determined using a particle size analyzer, while cellular uptake of rhodamine-entrapped liposomal nanoparticles (Rho-LnPs) was determined by confocal microscopy. Gadolinium hexanoate (Gd-Hex) was synthesized and entrapped into the liposomal nanoparticle (LnP) (Gd-Hex-LnP), as a model contrast agent, to evaluate gadolinium biodistribution and accumulation by LnPs in vivo using inductively coupled plasma mass spectrometry (ICP-MS). The mean hydrodynamic diameters of blank LnPs and Zhubech were 90.0 ± 0.65 nm and 124.9 ± 3.2 nm, respectively. The hydrodynamic diameter of Zhubech was found to be highly stable at 4 °C and 25 °C for 30 days in solution. In vitro drug release of MFU from Zhubech formulation exhibited the Higuchi model (R2 value = 0.95). Both Miapaca-2 and Panc-1 treated with Zhubech showed reduced viability, two- or four-fold lower than that of MFU-treated cells in 3D spheroid (IC50Zhubech = 3.4 ± 1.0 µM vs. IC50MFU = 6.8 ± 1.1 µM) and organoid (IC50Zhubech = 9.8 ± 1.4 µM vs. IC50MFU = 42.3 ± 1.0 µM) culture models. Confocal imaging confirmed a high uptake of rhodamine-entrapped LnP by Panc-1 cells in a time-dependent manner. Tumor-efficacy studies in a PDX bearing mouse model revealed a more than 9-fold decrease in mean tumor volumes in Zhubech-treated (108 ± 13.5 mm3) compared to 5-FU-treated (1107 ± 116.2 mm3) animals, respectively. This study demonstrates that Zhubech may be a potential candidate for delivering drugs for pancreatic cancer treatment.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Animais , Camundongos , Lipossomos/química , Gadolínio/uso terapêutico , Distribuição Tecidual , Neoplasias Pancreáticas/tratamento farmacológico , Fluoruracila/uso terapêutico , Nanopartículas/química , Neoplasias Pancreáticas
4.
J Natl Med Assoc ; 115(2): 164-174, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36801148

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of cancer mortality and the incidence is projected to increase by 2030. Despite recent advances in its treatment, African Americans have a 50-60% higher incidence and 30% higher mortality rate when compared to European Americans possibly resulting from differences in socioeconomic status, access to healthcare, and genetics. Genetics plays a role in cancer predisposition, response to cancer therapeutics (pharmacogenetics), and in tumor behavior, making some genes targets for oncologic therapeutics. We hypothesize that the germline genetic differences in predisposition, drug response, and targeted therapies also impact PDAC disparities. To demonstrate the impact of genetics and pharmacogenetics on PDAC disparities, a review of the literature was performed using PubMed with variations of the following keywords: pharmacogenetics, pancreatic cancer, race, ethnicity, African, Black, toxicity, and the FDA-approved drug names: Fluoropyrimidines, Topoisomerase inhibitors, Gemcitabine, Nab-Paclitaxel, Platinum agents, Pembrolizumab, PARP-inhibitors, and NTRK fusion inhibitors. Our findings suggest that the genetic profiles of African Americans may contribute to disparities related to FDA approved chemotherapeutic response for patients with PDAC. We recommend a strong focus on improving genetic testing and participation in biobank sample donations for African Americans. In this way, we can improve our current understanding of genes that influence drug response for patients with PDAC.


Assuntos
Antineoplásicos , Negro ou Afro-Americano , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Negro ou Afro-Americano/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/etnologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/etnologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Farmacogenética , Terapia de Alvo Molecular/métodos
5.
BMC Cancer ; 22(1): 1345, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550419

RESUMO

The failure of current chemotherapeutic agents for pancreatic cancer (PCa) makes it the most aggressive soft tissue tumor with a 5-year survival of slightly above 10% and is estimated to be the second leading cause of cancer death by 2030. OBJECTIVE: The main aim was to synthesize, characterize and evaluate the anticancer activity of 1,3-bistetrahydrofuran-2yl-5FU (MFU). METHODS: MFU was synthesized by using 5-fluorouracil (5-FU) and tetrahydrofuran acetate, and characterized by nuclear magnetic resonance (NMR), micro-elemental analysis, high-performance liquid chromatography (HPLC), and liquid chromatography with mass spectrophotometry (LC-MS). MFU and Gemcitabine hydrochloride (GemHCl) were tested for antiproliferative activity against MiaPaca-2 and Panc-1 cell lines. RESULTS: The half-minimum inhibitory concentration (IC50) of MFU was twice lower than that of GemHCl when used in both cell lines. MiaPaca-2 cells (MFU-IC50 = 4.5 ± 1.2 µM vs. GemHCl-IC50 = 10.3 ± 1.1 µM); meanwhile similar trend was observed in Panc-1 cells (MFU-IC50 = 3.0 ± 1 µM vs. GemHCl-IC50 = 6.1 ± 1.03 µM). The MFU and GemHCl effects on 3D spheroids showed a similar trend (IC50-GemHCl = 14.3 ± 1.1 µM vs. IC50-MFU = 7.2 ± 1.1 µM) for MiaPaca-2 cells, and (IC50-GemHCl = 16.3 ± 1.1 µM vs. IC50-MFU = 9.2 ± 1.1 µM) for Panc-1 cells. MFU significantly inhibited clonogenic cell growth, and induced cell death via apoptosis. Cell cycle data showed mean PI for GemHCl (48.5-55.7) twice higher than MFU (24.7 to 27.9) for MiaPaca-2 cells, and similarly to Panc-1 cells. The in-vivo model showed intensely stained EGFR (stained brown) in all control, GemHCl and MFU-treated mice bearing subcutaneous PDX tumors, however, HER2 expression was less stained in MFU-treated tumors compared to GemHCl-treated tumors and controls. Mean tumor volume of MFU-treated mice (361 ± 33.5 mm3) was three-fold lower than GemHCl-treated mice (1074 ± 181.2 mm3) bearing pancreatic PDX tumors. CONCLUSION: MFU was synthesized with high purity and may have potential anticancer activity against PCa.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Animais , Camundongos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Pancreáticas/patologia , Gencitabina , Proliferação de Células , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA